예제 #1
0
def test_ocp_argument_errors():
    sys = ct.ss2io(ct.ss([[1, 1], [0, 1]], [[1], [0.5]], np.eye(2), 0, 1))

    # State and input constraints
    constraints = [
        (sp.optimize.LinearConstraint, np.eye(3), [-5, -5, -1], [5, 5, 1]),
    ]

    # Quadratic state and input penalty
    Q = [[1, 0], [0, 1]]
    R = [[1]]
    cost = opt.quadratic_cost(sys, Q, R)

    # Set up the optimal control problem
    time = np.arange(0, 5, 1)
    x0 = [4, 0]

    # Trajectory constraints not in the right form
    with pytest.raises(TypeError, match="constraints must be a list"):
        res = opt.solve_ocp(sys, time, x0, cost, np.eye(2))

    # Terminal constraints not in the right form
    with pytest.raises(TypeError, match="constraints must be a list"):
        res = opt.solve_ocp(
            sys, time, x0, cost, constraints, terminal_constraints=np.eye(2))

    # Initial guess in the wrong shape
    with pytest.raises(ValueError, match="initial guess is the wrong shape"):
        res = opt.solve_ocp(
            sys, time, x0, cost, constraints, initial_guess=np.zeros((4,1,1)))
예제 #2
0
def test_optimal_basis_simple():
    sys = ct.ss2io(ct.ss([[1, 1], [0, 1]], [[1], [0.5]], np.eye(2), 0, 1))

    # State and input constraints
    constraints = [
        (sp.optimize.LinearConstraint, np.eye(3), [-5, -5, -1], [5, 5, 1]),
    ]

    # Quadratic state and input penalty
    Q = [[1, 0], [0, 1]]
    R = [[1]]
    cost = opt.quadratic_cost(sys, Q, R)

    # Set up the optimal control problem
    Tf = 5
    time = np.arange(0, Tf, 1)
    x0 = [4, 0]

    # Basic optimal control problem
    res1 = opt.solve_ocp(sys,
                         time,
                         x0,
                         cost,
                         constraints,
                         basis=flat.BezierFamily(4, Tf),
                         return_x=True)
    assert res1.success

    # Make sure the constraints were satisfied
    np.testing.assert_array_less(np.abs(res1.states[0]), 5 + 1e-6)
    np.testing.assert_array_less(np.abs(res1.states[1]), 5 + 1e-6)
    np.testing.assert_array_less(np.abs(res1.inputs[0]), 1 + 1e-6)

    # Pass an initial guess and rerun
    res2 = opt.solve_ocp(sys,
                         time,
                         x0,
                         cost,
                         constraints,
                         initial_guess=0.99 * res1.inputs,
                         basis=flat.BezierFamily(4, Tf),
                         return_x=True)
    assert res2.success
    np.testing.assert_allclose(res2.inputs, res1.inputs, atol=0.01, rtol=0.01)

    # Run with logging turned on for code coverage
    res3 = opt.solve_ocp(sys,
                         time,
                         x0,
                         cost,
                         constraints,
                         basis=flat.BezierFamily(4, Tf),
                         return_x=True,
                         log=True)
    assert res3.success
    np.testing.assert_almost_equal(res3.inputs, res1.inputs, decimal=3)
예제 #3
0
def test_finite_horizon_simple():
    # Define a linear system with constraints
    # Source: https://www.mpt3.org/UI/RegulationProblem

    # LTI prediction model
    sys = ct.ss2io(ct.ss([[1, 1], [0, 1]], [[1], [0.5]], np.eye(2), 0, 1))

    # State and input constraints
    constraints = [
        (sp.optimize.LinearConstraint, np.eye(3), [-5, -5, -1], [5, 5, 1]),
    ]

    # Quadratic state and input penalty
    Q = [[1, 0], [0, 1]]
    R = [[1]]
    cost = opt.quadratic_cost(sys, Q, R)

    # Set up the optimal control problem
    time = np.arange(0, 5, 1)
    x0 = [4, 0]

    # Retrieve the full open-loop predictions
    res = opt.solve_ocp(
        sys, time, x0, cost, constraints, squeeze=True)
    t, u_openloop = res.time, res.inputs
    np.testing.assert_almost_equal(
        u_openloop, [-1, -1, 0.1393, 0.3361, -5.204e-16], decimal=4)
예제 #4
0
def time_steering_terminal_cost():
    # Define cost and constraints
    traj_cost = opt.quadratic_cost(vehicle, None, np.diag([0.1, 1]), u0=uf)
    term_cost = opt.quadratic_cost(vehicle, np.diag([1, 10, 10]), None, x0=xf)
    constraints = [opt.input_range_constraint(vehicle, [8, -0.1], [12, 0.1])]

    res = opt.solve_ocp(
        vehicle,
        horizon,
        x0,
        traj_cost,
        constraints,
        terminal_cost=term_cost,
        initial_guess=bend_left,
        print_summary=False,
        solve_ivp_kwargs={
            'atol': 1e-4,
            'rtol': 1e-2
        },
        # minimize_method='SLSQP', minimize_options={'eps': 0.01}
        minimize_method='trust-constr',
        minimize_options={'finite_diff_rel_step': 0.01},
    )
    # Only count this as a benchmark if we converged
    assert res.success
예제 #5
0
def test_optimal_logging(capsys):
    """Test logging functions (mainly for code coverage)"""
    sys = ct.ss2io(ct.ss(np.eye(2), np.eye(2), np.eye(2), 0, 1))

    # Set up the optimal control problem
    cost = opt.quadratic_cost(sys, 1, 1)
    state_constraint = opt.state_range_constraint(sys, [-np.inf, 1], [10, 1])
    input_constraint = opt.input_range_constraint(sys, [-100, -100],
                                                  [100, 100])
    time = np.arange(0, 3, 1)
    x0 = [-1, 1]

    # Solve it, with logging turned on (with warning due to mixed constraints)
    with pytest.warns(sp.optimize.optimize.OptimizeWarning,
                      match="Equality and inequality .* same element"):
        res = opt.solve_ocp(sys,
                            time,
                            x0,
                            cost,
                            input_constraint,
                            terminal_cost=cost,
                            terminal_constraints=state_constraint,
                            log=True)

    # Make sure the output has info available only with logging turned on
    captured = capsys.readouterr()
    assert captured.out.find("process time") != -1
예제 #6
0
def time_steering_bezier_basis(nbasis, ntimes):
    # Set up costs and constriants
    Q = np.diag([.1, 10, .1])  # keep lateral error low
    R = np.diag([1, 1])  # minimize applied inputs
    cost = opt.quadratic_cost(vehicle, Q, R, x0=xf, u0=uf)
    constraints = [opt.input_range_constraint(vehicle, [0, -0.1], [20, 0.1])]
    terminal = [opt.state_range_constraint(vehicle, xf, xf)]

    # Set up horizon
    horizon = np.linspace(0, Tf, ntimes, endpoint=True)

    # Set up the optimal control problem
    res = opt.solve_ocp(
        vehicle,
        horizon,
        x0,
        cost,
        constraints,
        terminal_constraints=terminal,
        initial_guess=bend_left,
        basis=flat.BezierFamily(nbasis, T=Tf),
        # solve_ivp_kwargs={'atol': 1e-4, 'rtol': 1e-2},
        minimize_method='trust-constr',
        minimize_options={'finite_diff_rel_step': 0.01},
        # minimize_method='SLSQP', minimize_options={'eps': 0.01},
        return_states=True,
        print_summary=False)
    t, u, x = res.time, res.inputs, res.states

    # Make sure we found a valid solution
    assert res.success
예제 #7
0
def time_steering_terminal_constraint(integrator_name, minimizer_name):
    # Get the integrator and minimizer parameters to use
    integrator = integrator_table[integrator_name]
    minimizer = minimizer_table[minimizer_name]

    # Input cost and terminal constraints
    R = np.diag([1, 1])  # minimize applied inputs
    cost = opt.quadratic_cost(vehicle, np.zeros((3, 3)), R, u0=uf)
    constraints = [opt.input_range_constraint(vehicle, [8, -0.1], [12, 0.1])]
    terminal = [opt.state_range_constraint(vehicle, xf, xf)]

    res = opt.solve_ocp(
        vehicle,
        horizon,
        x0,
        cost,
        constraints,
        terminal_constraints=terminal,
        initial_guess=bend_left,
        log=False,
        solve_ivp_method=integrator[0],
        solve_ivp_kwargs=integrator[1],
        minimize_method=minimizer[0],
        minimize_options=minimizer[1],
    )
    # Only count this as a benchmark if we converged
    assert res.success
예제 #8
0
def test_discrete_lqr():
    # oscillator model defined in 2D
    # Source: https://www.mpt3.org/UI/RegulationProblem
    A = [[0.5403, -0.8415], [0.8415, 0.5403]]
    B = [[-0.4597], [0.8415]]
    C = [[1, 0]]
    D = [[0]]

    # Linear discrete-time model with sample time 1
    sys = ct.ss2io(ct.ss(A, B, C, D, 1))

    # Include weights on states/inputs
    Q = np.eye(2)
    R = 1
    K, S, E = ct.dlqr(A, B, Q, R)

    # Compute the integral and terminal cost
    integral_cost = opt.quadratic_cost(sys, Q, R)
    terminal_cost = opt.quadratic_cost(sys, S, None)

    # Solve the LQR problem
    lqr_sys = ct.ss2io(ct.ss(A - B @ K, B, C, D, 1))

    # Generate a simulation of the LQR controller
    time = np.arange(0, 5, 1)
    x0 = np.array([1, 1])
    _, _, lqr_x = ct.input_output_response(lqr_sys, time, 0, x0, return_x=True)

    # Use LQR input as initial guess to avoid convergence/precision issues
    lqr_u = np.array(-K @ lqr_x[0:time.size])  # convert from matrix

    # Formulate the optimal control problem and compute optimal trajectory
    optctrl = opt.OptimalControlProblem(sys,
                                        time,
                                        integral_cost,
                                        terminal_cost=terminal_cost,
                                        initial_guess=lqr_u)
    res1 = optctrl.compute_trajectory(x0, return_states=True)

    # Compare to make sure results are the same
    np.testing.assert_almost_equal(res1.inputs, lqr_u[0])
    np.testing.assert_almost_equal(res1.states, lqr_x)

    # Add state and input constraints
    trajectory_constraints = [
        (sp.optimize.LinearConstraint, np.eye(3), [-5, -5, -.5], [5, 5, 0.5]),
    ]

    # Re-solve
    res2 = opt.solve_ocp(sys,
                         time,
                         x0,
                         integral_cost,
                         trajectory_constraints,
                         terminal_cost=terminal_cost,
                         initial_guess=lqr_u)

    # Make sure we got a different solution
    assert np.any(np.abs(res1.inputs - res2.inputs) > 0.1)
def test_discrete_lqr():
    # oscillator model defined in 2D
    # Source: https://www.mpt3.org/UI/RegulationProblem
    A = [[0.5403, -0.8415], [0.8415, 0.5403]]
    B = [[-0.4597], [0.8415]]
    C = [[1, 0]]
    D = [[0]]

    # Linear discrete-time model with sample time 1
    sys = ct.ss2io(ct.ss(A, B, C, D, 1))

    # Include weights on states/inputs
    Q = np.eye(2)
    R = 1
    K, S, E = ct.lqr(A, B, Q, R)  # note: *continuous* time LQR

    # Compute the integral and terminal cost
    integral_cost = opt.quadratic_cost(sys, Q, R)
    terminal_cost = opt.quadratic_cost(sys, S, None)

    # Formulate finite horizon MPC problem
    time = np.arange(0, 5, 1)
    x0 = np.array([1, 1])
    optctrl = opt.OptimalControlProblem(sys,
                                        time,
                                        integral_cost,
                                        terminal_cost=terminal_cost)
    res1 = optctrl.compute_trajectory(x0, return_states=True)

    with pytest.xfail("discrete LQR not implemented"):
        # Result should match LQR
        K, S, E = ct.dlqr(A, B, Q, R)
        lqr_sys = ct.ss2io(ct.ss(A - B @ K, B, C, D, 1))
        _, _, lqr_x = ct.input_output_response(lqr_sys,
                                               time,
                                               0,
                                               x0,
                                               return_x=True)
        np.testing.assert_almost_equal(res1.states, lqr_x)

    # Add state and input constraints
    trajectory_constraints = [
        (sp.optimize.LinearConstraint, np.eye(3), [-10, -10, -1], [10, 10, 1]),
    ]

    # Re-solve
    res2 = opt.solve_ocp(sys,
                         time,
                         x0,
                         integral_cost,
                         constraints,
                         terminal_cost=terminal_cost)

    # Make sure we got a different solution
    assert np.any(np.abs(res1.inputs - res2.inputs) > 0.1)
예제 #10
0
def time_steering_integrated_cost():
    # Set up the cost functions
    Q = np.diag([.1, 10, .1])  # keep lateral error low
    R = np.diag([.1, 1])  # minimize applied inputs
    quad_cost = opt.quadratic_cost(vehicle, Q, R, x0=xf, u0=uf)

    res = opt.solve_ocp(
        vehicle,
        horizon,
        x0,
        quad_cost,
        initial_guess=bend_left,
        print_summary=False,
        # solve_ivp_kwargs={'atol': 1e-2, 'rtol': 1e-2},
        minimize_method='trust-constr',
        minimize_options={'finite_diff_rel_step': 0.01},
    )

    # Only count this as a benchmark if we converged
    assert res.success
예제 #11
0
def test_terminal_constraints(sys_args):
    """Test out the ability to handle terminal constraints"""
    # Create the system
    sys = ct.ss2io(ct.ss(*sys_args))

    # Shortest path to a point is a line
    Q = np.zeros((2, 2))
    R = np.eye(2)
    cost = opt.quadratic_cost(sys, Q, R)

    # Set up the terminal constraint to be the origin
    final_point = [opt.state_range_constraint(sys, [0, 0], [0, 0])]

    # Create the optimal control problem
    time = np.arange(0, 3, 1)
    optctrl = opt.OptimalControlProblem(
        sys, time, cost, terminal_constraints=final_point)

    # Find a path to the origin
    x0 = np.array([4, 3])
    res = optctrl.compute_trajectory(x0, squeeze=True, return_x=True)
    t, u1, x1 = res.time, res.inputs, res.states

    # Bug prior to SciPy 1.6 will result in incorrect results
    if NumpyVersion(sp.__version__) < '1.6.0':
        pytest.xfail("SciPy 1.6 or higher required")

    np.testing.assert_almost_equal(x1[:,-1], 0, decimal=4)

    # Make sure it is a straight line
    Tf = time[-1]
    if ct.isctime(sys):
        # Continuous time is not that accurate on the input, so just skip test
        pass
    else:
        # Final point doesn't affect cost => don't need to test
        np.testing.assert_almost_equal(
            u1[:, 0:-1],
            np.kron((-x0/Tf).reshape((2, 1)), np.ones(time.shape))[:, 0:-1])
    np.testing.assert_allclose(
        x1, np.kron(x0.reshape((2, 1)), time[::-1]/Tf), atol=0.1, rtol=0.01)

    # Re-run using initial guess = optional and make sure nothing changes
    res = optctrl.compute_trajectory(x0, initial_guess=u1)
    np.testing.assert_almost_equal(res.inputs, u1)

    # Re-run using a basis function and see if we get the same answer
    res = opt.solve_ocp(sys, time, x0, cost, terminal_constraints=final_point,
                       basis=flat.BezierFamily(4, Tf))
    np.testing.assert_almost_equal(res.inputs, u1, decimal=2)

    # Impose some cost on the state, which should change the path
    Q = np.eye(2)
    R = np.eye(2) * 0.1
    cost = opt.quadratic_cost(sys, Q, R)
    optctrl = opt.OptimalControlProblem(
        sys, time, cost, terminal_constraints=final_point)

    # Turn off warning messages, since we sometimes don't get convergence
    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", message="unable to solve", category=UserWarning)
        # Find a path to the origin
        res = optctrl.compute_trajectory(
            x0, squeeze=True, return_x=True, initial_guess=u1)
        t, u2, x2 = res.time, res.inputs, res.states

        # Not all configurations are able to converge (?)
        if res.success:
            np.testing.assert_almost_equal(x2[:,-1], 0)

            # Make sure that it is *not* a straight line path
            assert np.any(np.abs(x2 - x1) > 0.1)
            assert np.any(np.abs(u2) > 1)       # Make sure next test is useful

        # Add some bounds on the inputs
        constraints = [opt.input_range_constraint(sys, [-1, -1], [1, 1])]
        optctrl = opt.OptimalControlProblem(
            sys, time, cost, constraints, terminal_constraints=final_point)
        res = optctrl.compute_trajectory(x0, squeeze=True, return_x=True)
        t, u3, x3 = res.time, res.inputs, res.states

        # Check the answers only if we converged
        if res.success:
            np.testing.assert_almost_equal(x3[:,-1], 0, decimal=4)

            # Make sure we got a new path and didn't violate the constraints
            assert np.any(np.abs(x3 - x1) > 0.1)
            np.testing.assert_array_less(np.abs(u3), 1 + 1e-6)

    # Make sure that infeasible problems are handled sensibly
    x0 = np.array([10, 3])
    with pytest.warns(UserWarning, match="unable to solve"):
        res = optctrl.compute_trajectory(x0, squeeze=True, return_x=True)
        assert not res.success
예제 #12
0
def test_optimal_doc():
    """Test optimal control problem from documentation"""
    def vehicle_update(t, x, u, params):
        # Get the parameters for the model
        l = params.get('wheelbase', 3.)  # vehicle wheelbase
        phimax = params.get('maxsteer', 0.5)  # max steering angle (rad)

        # Saturate the steering input
        phi = np.clip(u[1], -phimax, phimax)

        # Return the derivative of the state
        return np.array([
            np.cos(x[2]) * u[0],  # xdot = cos(theta) v
            np.sin(x[2]) * u[0],  # ydot = sin(theta) v
            (u[0] / l) * np.tan(phi)  # thdot = v/l tan(phi)
        ])

    def vehicle_output(t, x, u, params):
        return x  # return x, y, theta (full state)

    # Define the vehicle steering dynamics as an input/output system
    vehicle = ct.NonlinearIOSystem(vehicle_update,
                                   vehicle_output,
                                   states=3,
                                   name='vehicle',
                                   inputs=('v', 'phi'),
                                   outputs=('x', 'y', 'theta'))

    # Define the initial and final points and time interval
    x0 = [0., -2., 0.]
    u0 = [10., 0.]
    xf = [100., 2., 0.]
    uf = [10., 0.]
    Tf = 10

    # Define the cost functions
    Q = np.diag([0, 0, 0.1])  # don't turn too sharply
    R = np.diag([1, 1])  # keep inputs small
    P = np.diag([1000, 1000, 1000])  # get close to final point
    traj_cost = opt.quadratic_cost(vehicle, Q, R, x0=xf, u0=uf)
    term_cost = opt.quadratic_cost(vehicle, P, 0, x0=xf)

    # Define the constraints
    constraints = [opt.input_range_constraint(vehicle, [8, -0.1], [12, 0.1])]

    # Solve the optimal control problem
    horizon = np.linspace(0, Tf, 3, endpoint=True)
    result = opt.solve_ocp(vehicle,
                           horizon,
                           x0,
                           traj_cost,
                           constraints,
                           terminal_cost=term_cost,
                           initial_guess=u0)

    # Make sure the resulting trajectory generate a good solution
    resp = ct.input_output_response(vehicle,
                                    horizon,
                                    result.inputs,
                                    x0,
                                    t_eval=np.linspace(0, Tf, 10))
    t, y = resp
    assert (y[0, -1] - xf[0]) / xf[0] < 0.01
    assert (y[1, -1] - xf[1]) / xf[1] < 0.01
    assert y[2, -1] < 0.1
# Provide an intial guess (will be extended to entire horizon)
bend_left = [10, 0.01]  # slight left veer

# Turn on debug level logging so that we can see what the optimizer is doing
logging.basicConfig(level=logging.DEBUG,
                    filename="steering-integral_cost.log",
                    filemode='w',
                    force=True)

# Compute the optimal control, setting step size for gradient calculation (eps)
start_time = time.process_time()
result1 = opt.solve_ocp(
    vehicle,
    horizon,
    x0,
    quad_cost,
    initial_guess=bend_left,
    log=True,
    minimize_method='trust-constr',
    minimize_options={'finite_diff_rel_step': 0.01},
)
print("* Total time = %5g seconds\n" % (time.process_time() - start_time))

# If we are running CI tests, make sure we succeeded
if 'PYCONTROL_TEST_EXAMPLES' in os.environ:
    assert result1.success

# Extract and plot the results (+ state trajectory)
t1, u1 = result1.time, result1.inputs
t1, y1 = ct.input_output_response(vehicle, horizon, u1, x0)
plot_results(t1, y1, u1, figure=1, yf=xf[0:2])