import torch from torch.autograd import Variable from torch.utils.data import DataLoader import torchvision import torch.nn.functional as F import torch.optim as optim from dataset_loader import MyData, MyTestData, DTestData from model import FocalNet, FocalNet_sub from conv_lstm import ConvLSTM from functions import imsave import argparse from Trainer_Teacher import Trainer import os if __name__ == '__main__': configurations = { 1: dict( max_iteration=500000, lr=1.0e-10, momentum=0.99, weight_decay=0.0005, spshot=10000, nclass=2, sshow=10, focal_num=12, ) } parser=argparse.ArgumentParser() parser.add_argument('--phase', type=str, default='test', help='train or test') parser.add_argument('--param', type=str, default=True, help='path to pre-trained parameters')
import torch from torch.autograd import Variable from torch.utils.data import DataLoader import torchvision import torch.nn.functional as F import torch.optim as optim from dataset_loader import MyData, MyTestData from model import FocalNet, FocalNet_sub from conv_lstm import ConvLSTM from functions import imsave import argparse from Trainer_Student import Trainer from resnet_18 import Resnet_18 import os import imageio if __name__ == '__main__': configurations = { 1: dict( max_iteration=300000, lr=1.0e-10, momentum=0.99, weight_decay=0.0005, spshot=10000, nclass=2, sshow=10, focal_num=12, ) } parser=argparse.ArgumentParser()