예제 #1
0
# -*- coding: utf-8 -*-
# @Time    : 2020/3/20 20:33
# @Author  : zhoujun
"""
用于检查生成的json文件有没有问题
"""
from PIL import Image
from tqdm import tqdm
from matplotlib import pyplot as plt

from convert.utils import show_bbox_on_image, load_gt

if __name__ == '__main__':
    json_path = r'D:\dataset\自然场景文字检测挑战赛初赛数据\验证集\validation_new.json'
    data = load_gt(json_path)
    for img_path, gt in tqdm(data.items()):
        # print(gt['illegibility_list'])
        # print(gt['texts'])
        img = Image.open(img_path)
        img = show_bbox_on_image(img, gt['polygons'], gt['texts'])
        plt.imshow(img)
        plt.show()
예제 #2
0
파일: det.py 프로젝트: zoujuny/OCR_DataSet
        return item_dict['img']


if __name__ == '__main__':
    from tqdm import tqdm
    from torchvision import transforms
    from matplotlib import pyplot as plt

    # 支持中文
    plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

    json_path = r'D:\dataset\icdar2017rctw\detection\train.json'

    dataset = DetDataSet(json_path, transform=transforms.ToTensor())
    train_loader = DataLoader(dataset=dataset,
                              batch_size=1,
                              shuffle=True,
                              num_workers=0)
    pbar = tqdm(total=len(train_loader))
    for i, data in enumerate(train_loader):
        img = data['img'][0].numpy().transpose(1, 2, 0) * 255
        label = [x[0] for x in data['label']]

        img = show_bbox_on_image(Image.fromarray(img.astype(np.uint8)),
                                 data['polygons'], label)
        plt.imshow(img)
        plt.show()
        pbar.update(1)
    pbar.close()