# def update_path_for_stempy(): # dir = os.path.dirname(__file__) # append_to_path(os.path.normpath(os.path.join(dir, '..', '..'))) # stempy # append_to_path(os.path.normpath(os.path.join(dir, '..', '..', '..', '..', 'Infpy', 'python'))) # Infpy # append_to_path(os.path.normpath(os.path.join(dir, '..', '..', '..', '..', 'PyICL', 'Python'))) # PyICL # # update_path_for_stempy() # # Set up the logging # import logging, os, sys, time from cookbook.script_basics import setup_logging setup_logging(__file__, level=logging.INFO) import stempy def get_fasta_file(filename): return os.path.join(os.path.dirname(__file__), '..', 'fasta', filename) seed = 'TTTAAAATACTTTAAA' num_to_find = 10000 options = stempy.get_default_options() options.max_num_sites = options.min_num_sites = 10 options.min_w = options.max_w = W = len(seed) # # read in data
import logging from optparse import OptionParser import pylab as pl, numpy as np from cookbook.script_basics import log_options, setup_logging import infpy.mixture.beta reload(infpy.mixture.beta) from infpy.mixture import beta def sigmoid(x): return 1.0 / (1.0 + np.exp(-x)) setup_logging() np.seterr(over="warn", invalid="raise") parser = OptionParser() beta.add_options(parser) options, args = parser.parse_args() log_options(parser, options) logging.info("Seeding numpy.random") np.random.seed(1) exp_family = beta.DirichletExpFamily(k=2) logging.info("Creating data") block_size = 30 y = np.empty(3 * block_size)
dest="model_file", help="Filename where model is stored and saved (will create new model if file does not exist or option not given).", default=None, ) parser.add_option( "--num-starts", dest="num_starts", help="Number of different starting points to try.", type="int", default=1 ) parser.add_option("--plot-file", dest="plot_file", help="File to plot distribution in.", default=None) parser.add_option("--log-plot", dest="log_plot", help="Use log-scale for plot.", action="store_true") parser.add_option( "--predictions-file", dest="predictions_file", help="Filename predictions are written to.", default=None ) parser.add_option("--seed", dest="seed", help="Seed for the RNG.", type="int", default=1) parser.add_option("--log-file", dest="log_file", help="Log file.", type="str", default=None) options, args = parser.parse_args() setup_logging(file=options.log_file, level=logging.INFO) log_options(parser, options) exp_family = beta.DirichletExpFamily(k=2) x, weights = load_data(options) X = np.empty((len(x), 2)) X[:, 0] = x X[:, 1] = 1.0 - X[:, 0] # get sufficient statistics T = exp_family.T(X) # plot prior for pi bar # plot_pi_bar_prior(options.alpha) # make reproducible
type='int', default=1, ) parser.add_option( "--x-validate-groups", help="Number of cross-validation groups.", type='int', default=5, ) parser.add_option( "--seed", dest="seed", help="Seed for the RNG.", type='int', default=1, ) options, args = parser.parse_args() if 1 != len(args): raise ValueError('Need to specify data file.') filename = args[0] setup_logging(level=logging.INFO) log_options(parser, options) exp_family = beta.DirichletExpFamily(k=2) # create object for parallelism tc = client.TaskClient() results = main(filename) plot_results(results)