예제 #1
0
def main():
    from cops_and_robots.map_tools.map_elements import MapArea, MapObject

    fig = plt.figure()
    ax = fig.add_subplot(111)

    area1 = MapArea('Area1', [1, 1], pose=[1, 1, 0], visible=True, color_str='blue')
    area2 = MapArea('Area2', [1, 1], pose=[-1, 1, 0], visible=True, color_str='lightblue')
    object1 = MapObject('Object1', [1, 1], pose=[0, 1, 0], visible=True, color_str='red')
    object2 = MapObject('Object2', [1, 1], pose=[0, -1, 0], visible=True, color_str='magenta')

    static_elements = [area1, object1]
    dynamic_elements = [area2, object2]
    information_elements = []
    elements = {'static': static_elements, 'dynamic': dynamic_elements, 'information':information_elements}
    invisible_elements = [area2, object1]

    bounds = [-5, -5, 5, 5]
    sl = ShapeLayer(elements, bounds=bounds)
    ax.set_xlim(bounds[0], bounds[2])
    ax.set_ylim(bounds[1], bounds[3])
    # sl = ShapeLayer(elements, invisible_elements=invisible_elements, bounds=[-5, -5, 5, 5])

    ani = animation.FuncAnimation(sl.fig, sl.update,
        frames=xrange(100),
        interval=100,
        repeat=True,
        blit=False)

    plt.show()
예제 #2
0
    def __init__(self,
                 robot_pose=(0, 0, 0),
                 visible=True,
                 default_color=cnames['yellow'],
                 element_dict={},
                 min_view_dist=0.3,
                 max_view_dist=1.0):
        self.element_dict = element_dict
        # Define nominal viewcone
        self.min_view_dist = min_view_dist  # [m]
        self.max_view_dist = max_view_dist  # [m]
        self.view_angle = math.pi / 2  # [rad]
        viewcone_pts = [
            (0, 0),
            (self.max_view_dist * math.cos(self.view_angle / 2),
             self.max_view_dist * math.sin(self.view_angle / 2)),
            (self.max_view_dist * math.cos(-self.view_angle / 2),
             self.max_view_dist * math.sin(-self.view_angle / 2)),
            (0, 0),
        ]

        # Create SoftMax model for camera
        self.detection_model = camera_model_2D(self.min_view_dist,
                                               self.max_view_dist)

        # Instantiate Sensor superclass object
        update_rate = 1  # [hz]
        has_physical_dimensions = True
        super(Camera, self).__init__(update_rate, has_physical_dimensions)

        # Set the ideal and actual viewcones
        self.ideal_viewcone = MapObject(
            'Ideal viewcone',
            viewcone_pts,
            visible=False,
            blocks_camera=False,
            color_str='pink',
            pose=robot_pose,
            has_relations=False,
            centroid_at_origin=False,
        )
        self.viewcone = MapObject(
            'Viewcone',
            viewcone_pts,
            alpha=0.2,
            visible=True,
            blocks_camera=False,
            color_str='lightyellow',
            pose=robot_pose,
            has_relations=False,
            centroid_at_origin=False,
        )
        self.view_pose = (0, 0, 0)

        # <>TODO: Add in and test an offset of (-0.1,-0.1)
        self.offset = (0, 0, 0)  # [m] offset (x,y,theta) from center of robot
        self._move_viewcone(robot_pose)

        # Set up the VB fusion parameters
        self.vb = VariationalBayes()
예제 #3
0
def set_up_fleming(map_):
    """Set up a map as the generic Fleming space configuration.

    """
    # Make vicon field space object
    field_w = 7.5  # [m] field width
    field = MapArea('Field', [field_w, field_w], has_relations=False)

    # Make wall objects
    l = 1.15  # [m] wall length
    w = 0.1524  # [m] wall width
    wall_shape = [l, w]

    poses = np.array([[-7, -1.55, 1],
                      [-7, -1.55 - l, 1],
                      [-7 + l/2 + w/2, -1, 0],
                      [-7 + 3*l/2 + w/2, -1, 0],
                      [-7 + 5*l/2 + w/2, -1, 0],
                      [-2, -1.55, 1],
                      [-2 + 1*l/2 + w/2, -1, 0],
                      [-2 + 3*l/2 + w/2, -1, 0],
                      [-2 + 5*l/2 +w/2, -1, 0],
                      [-7.45 + 1*l/2 + w/2, 1.4, 0],
                      [-7.45 + 3*l/2 + w/2, 1.4, 0],
                      [-7.45 + 5*l/2 + w/2, 1.4, 0],
                      [-7.45 + 7*l/2 + w/2, 1.4, 0],
                      [-7.45 + 9*l/2 + w/2, 1.4, 0],
                      [l/2 + w/2, 1.4, 0],
                      [3*l/2 + w/2, 1.4, 0],
                      [0, 1.4 + l/2, 1],
                      [0, 1.4 + 3*l/2, 1],
                     ])

    poses = poses * np.array([1, 1, 90])

    n_walls = poses.shape[0]
    walls = []
    for i in range(poses.shape[0]):
        name = 'Wall ' + str(i)
        pose = poses[i, :]
        wall = MapObject(name, wall_shape, pose=pose, color_str='sienna',
                         has_relations=False, map_bounds=map_.bounds)
        walls.append(wall)

    # Make rectangular objects (desk, bookcase, etc)
    labels = ['Bookcase', 'Desk', 'Chair', 'Filing Cabinet',
              'Dining Table', 'Mars Poster', 'Cassini Poster',
              'Fridge', 'Checkers Table','Fern']
    colors = ['sandybrown', 'sandybrown', 'brown', 'black',
              'brown', 'bisque', 'black',
              'black','sandybrown','sage']
    poses = np.array([[0, -1.2, 270],  # Bookcase
                      [-5.5, -2, 0],  # Desk
                      [3, -2, 270],  # Chair
                      [-4, -1.32, 270],  # Filing Cabinet
                      [-8.24, -2.15, 270],  # Dining Table
                      [-4.38, 3.67, 270],  # Mars Poster
                      [1.38, 3.67, 270],  # Cassini Poster
                      [-9.1, 3.3, 315],  # Fridge
                      [2.04, 2.66, 270],  # Checkers Table
                      [-2.475, 1.06, 270],  # Fern
                     ])
    sizes = np.array([[0.18, 0.38],  # Bookcase
                      [0.61, 0.99],  # Desk
                      [0.46, 0.41],  # Chair
                      [0.5, 0.37],  # Filing Cabinet
                      [1.17, 0.69],  # Dining Table
                      [0.05, 0.84],  # Mars Poster
                      [0.05, 0.56],  # Cassini Poster
                      [0.46, 0.46],  # Fridge
                      [0.5, 0.5],  # Checkers Table
                      [0.5, 0.5],  # Fern
                     ])

    landmarks = []
    for i, pose in enumerate(poses):
        landmark = MapObject(labels[i], sizes[i], pose=pose,
                             color_str=colors[i], map_bounds=map_.bounds)
        landmarks.append(landmark)

    # Add walls to map
    for wall in walls:
        map_.add_obj(wall)

    # Add landmarks to map
    for landmark in landmarks:
        map_.add_obj(landmark)

    # Create areas
    labels = ['Study', 'Library', 'Kitchen', 'Billiard Room', 'Hallway',
              'Dining Room']
    colors = ['aquamarine','lightcoral', 'goldenrod', 'sage','cornflowerblue',
              'orchid']
    points = np.array([[[-7.0, -3.33], [-7.0, -1], [-2, -1], [-2, -3.33]],
                       [[-2, -3.33], [-2, -1],[4.0, -1], [4.0, -3.33]],
                       [[-9.5, 1.4], [-9.5, 3.68],[0, 3.68], [0, 1.4]],
                       [[0, 1.4], [0, 3.68],[4, 3.68], [4, 1.4]],
                       [[-9.5, -1], [-9.5, 1.4],[4, 1.4], [4, -1]],
                       [[-9.5, -3.33], [-9.5, -1],[-7, -1], [-7, -3.33]],
                      ])

    for i, pts in enumerate(points):
        centroid = [pts[0,0] + np.abs(pts[2,0] - pts[0,0]) / 2,
                    pts[0,1] + np.abs(pts[1,1] - pts[0,1]) / 2, 0 ]
        area = MapArea(name=labels[i], shape_pts=pts, pose=centroid,
                       color_str=colors[i], map_bounds=map_.bounds)
        map_.add_area(area)

        # Relate landmarks and areas
        for landmark in landmarks:
            if area.shape.contains(Point(landmark.pose)):
                area.contained_objects[landmark.name] = landmark
                landmark.container_area = area
                landmark.define_relations(map_.bounds)
        area.define_relations(map_.bounds)

    # <>TODO: Include area demarcations
    map_.feasible_layer.define_feasible_regions(map_.static_elements)
예제 #4
0
    goal_points = [
        (0, 0, 0),
        (2, 0, 0),
        (2, 0.5, 90),
        (2, 1.5, 90),
        (2, 1.7, 90),
    ]

    # Define Map and its objects
    bounds = (-5, -5, 5, 5)

    l = 1.2192  # [m] wall length
    w = 0.1524  # [m] wall width

    pose = (2.4, 0, 90)
    wall1 = MapObject('wall1', (l, w), pose=pose)
    pose = (2, 2.2, 0)
    wall2 = MapObject('wall2', (l, w), pose=pose)

    shape_layer = ShapeLayer(bounds=bounds)
    shape_layer.add_obj(wall1)
    shape_layer.add_obj(wall2)
    shape_layer.plot()

    # Define Particle Filter
    # target_pose = (10,10,0)
    # particle_filter = ParticleFilter(bounds=bounds,"Roy")
    # particle_filter.update_viewcone(kinect,target_pose)

    # Move camera and update the camera
    for point in goal_points:
예제 #5
0
    def __init__(self,
                 name,
                 pose=None,
                 pose_source='python',
                 color_str='darkorange',
                 map_cfg={},
                 create_mission_planner=True,
                 goal_planner_cfg={},
                 path_planner_cfg={},
                 **kwargs):

        # Object attributes
        self.name = name
        self.pose_source = pose_source

        # Setup map
        self.map = Map(**map_cfg)

        # If pose is not given, randomly place in feasible layer.
        feasible_robot_generated = False
        if pose is None:
            while not feasible_robot_generated:
                x = random.uniform(self.map.bounds[0], self.map.bounds[2])
                y = random.uniform(self.map.bounds[1], self.map.bounds[3])
                if self.map.feasible_layer.pose_region.contains(Point([x, y])):
                    feasible_robot_generated = True
            theta = random.uniform(0, 359)
            pose = [x, y, theta]

        self.pose2D = Pose(self, pose, pose_source)
        self.pose_history = np.array(([0, 0, 0], self.pose2D.pose))
        if pose_source == 'python':
            self.publish_to_ROS = False
        else:
            self.publish_to_ROS = True

        # Setup planners
        if create_mission_planner:
            self.mission_planner = MissionPlanner(self)
        self.goal_planner = GoalPlanner(self,
                                        **goal_planner_cfg)
        # If pose_source is python, this robot is just in simulation
        if not self.publish_to_ROS:
            self.path_planner = PathPlanner(self, **path_planner_cfg)
            self.controller = Controller(self)

        # Define MapObject
        # <>TODO: fix this horrible hack
        if self.name == 'Deckard':
            pose = [0, 0, -np.pi/4]
            r = iRobotCreate.DIAMETER / 2
            n_sides = 4
            pose = [0, 0, -np.pi/4]
            x = [r * np.cos(2 * np.pi * n / n_sides + pose[2]) + pose[0]
                 for n in range(n_sides)]
            y = [r * np.sin(2 * np.pi * n / n_sides + pose[2]) + pose[1]
                 for n in range(n_sides)]
            shape_pts = Polygon(zip(x, y)).exterior.coords
        else:
            shape_pts = Point([0, 0]).buffer(iRobotCreate.DIAMETER / 2)\
                .exterior.coords
        self.map_obj = MapObject(self.name, shape_pts[:], has_relations=False,
                                 blocks_camera=False, color_str=color_str)
        self.update_shape()