예제 #1
0
    'siam_k': 2,
    'siam_ne': 20,
    'spec_ne': 100,
    'siam_lr': 1e-3,
    'spec_lr': 1e-6,
    'siam_patience': 10,
    'spec_patience': 20,
    'siam_drop': 0.1,
    'spec_drop': 0.001,
    'batch_size': 64,
    'siam_reg': None,
    'spec_reg': None ,
    'siam_n':  None,
    'siamese_tot_pairs': 3200,
    'arch': [
        {'type': 'relu', 'size': 512},
        {'type': 'relu', 'size': 512},
        {'type': 'relu', 'size': 4},
    ],
    'use_approx': False,
    'use_all_data': True,
}



# preprocess dataset
data = get_data(params)

# run spectral net
x_spectralnet, y_spectralnet = run_net(data, params)
예제 #2
0
                for x in train_motoric_indices
            ]),
                                             axis=0)
            eval_x_motoric = np.concatenate(tuple([
                preprocessed_data[1][x - delay:x + 750 - delay]
                for x in eval_motoric_indices
            ]),
                                            axis=0)
            eval_y_motoric = np.concatenate(tuple([
                preprocessed_data[3][x - delay:x + 750 - delay]
                for x in eval_motoric_indices
            ]),
                                            axis=0)
        else:
            train_x_motoric = preprocessed_data[0]
            train_y_motoric = preprocessed_data[2]
            eval_x_motoric = preprocessed_data[1]
            eval_y_motoric = preprocessed_data[3]
    statistics.distances(
        (train_x_motoric, eval_x_motoric, train_y_motoric, eval_y_motoric),
        'takens_MI_only')
    # Exploring data statistics

    # Process into spectral-net format, create pairs for siamese network
    data = get_data(
        params,
        (train_x_motoric, eval_x_motoric, train_y_motoric, eval_y_motoric))

    # run spectral net
    x_spectralnet, y_spectralnet = run_net(data, params)
예제 #3
0
    'siam_n':
    ...,
    'siamese_tot_pairs':
    ...,
    'arch': [
        {
            'type': 'relu',
            'size':...
        },
        {
            'type': 'relu',
            'size':...
        },
        {
            'type': 'relu',
            'size':...
        },
    ],
    'use_approx':
    ...,
}

# load dataset
x_train, x_test, y_train, y_test = load_new_dataset_data()
new_dataset_data = (x_train, x_test, y_train, y_test)

# preprocess dataset
data = get_data(params, new_dataset_data)

# run spectral net
x_spectralnet, y_spectralnet = run_net(data, params)
예제 #4
0
'''
Experiments on Caltech101-20 and NoisyMNIST.
'''

import os
import sys
# add directories in src/ to path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__),'..')))
# set cuda
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

from applications.MvSCN import run_net
from core.Config import load_config
from core.data import get_data


# load config for NoisyMNIST 
config = load_config('./config/noisymnist.yaml')

# load config for Caltech101-20
# config = load_config('./config/Caltech101-20.yaml')

# use pretrained SiameseNet. 
config['siam_pre_train'] = True

# LOAD DATA
data_list = get_data(config)

# RUN EXPERIMENT
x_final_list, scores = run_net(data_list, config)