예제 #1
0
파일: utils.py 프로젝트: zymale/simpledet
def create_teacher_module(pTeacherModel, worker_data_shape, input_batch_size,
                          ctx, rank, logger):
    t_prefix = pTeacherModel.prefix
    t_epoch = pTeacherModel.epoch
    t_endpoint = pTeacherModel.endpoint
    t_data_name = pTeacherModel.data_name
    t_label_name = pTeacherModel.label_name
    if rank == 0:
        logger.info(
            'Building teacher module with endpoint: {}'.format(t_endpoint))
    t_sym = pTeacherModel.prefix + '-symbol.json'
    t_sym = mx.sym.load(t_sym)
    t_sym = mx.sym.Group([t_sym.get_internals()[out] for out in t_endpoint])
    t_worker_data_shape = {key: worker_data_shape[key] for key in t_data_name}
    _, t_out_shape, _ = t_sym.infer_shape(**t_worker_data_shape)
    t_terminal_out_shape_dict = zip(t_sym.list_outputs(), t_out_shape)
    t_data_shape = []
    for idx, data_name in enumerate(t_data_name):
        data_shape = t_worker_data_shape[data_name]
        data_shape = (input_batch_size, ) + data_shape[1:]
        t_data_shape.append((data_name, data_shape))
    t_label_shape = []
    for idx, label_name in enumerate(t_label_name):
        label_shape = t_out_shape[idx]
        label_shape = (input_batch_size, ) + label_shape[1:]
        t_label_shape.append((label_name, label_shape))
    if rank == 0:
        logger.info('Teacher data_name: {}'.format(t_data_name))
        logger.info('Teacher data_shape: {}'.format(t_data_shape))
        logger.info('Teacher label_name: {}'.format(t_label_name))
        logger.info('Teacher label_shape: {}'.format(t_label_shape))

    if rank == 0:
        logger.info('Teacher terminal output shape')
        logger.info(pprint.pformat([i for i in t_terminal_out_shape_dict]))
    t_arg_params, t_aux_params = load_checkpoint(t_prefix, t_epoch)
    t_mod = DetModule(t_sym,
                      data_names=t_data_name,
                      label_names=None,
                      logger=logger,
                      context=ctx)
    t_mod.bind(data_shapes=t_data_shape, for_training=False, grad_req='null')
    t_mod.set_params(t_arg_params, t_aux_params)
    if rank == 0:
        logger.info('Finish teacher module build')
    return t_mod, t_label_name, t_label_shape
예제 #2
0
            print('parameter shape')
            print(
                pprint.pformat([
                    i for i in out_shape_dict if not i[0].endswith('output')
                ]))
            print('intermediate output shape')
            print(
                pprint.pformat(
                    [i for i in out_shape_dict if i[0].endswith('output')]))
            print('terminal output shape')
            print(pprint.pformat([i for i in terminal_out_shape_dict]))

            for i in pKv.gpus:
                ctx = mx.gpu(i)
                mod = DetModule(sym, data_names=data_names, context=ctx)
                mod.bind(data_shapes=loader.provide_data, for_training=False)
                mod.set_params(arg_params, aux_params, allow_extra=False)
                execs.append(mod)

        all_outputs = []

        if index_split == 0:

            def eval_worker(exe, data_queue, result_queue):
                while True:
                    batch = data_queue.get()
                    exe.forward(batch, is_train=False)
                    out = [x.asnumpy() for x in exe.get_outputs()]
                    result_queue.put(out)

            for exe in execs:
예제 #3
0
        pQuant = pModel.QuantizeTrainingParam
        assert pGen.fp16 == False, "current quantize training only support fp32 mode."
        from utils.graph_optimize import attach_quantize_node
        worker_data_shape = dict([(name, tuple(shape)) for name, shape in data_shape])
        # print(worker_data_shape)
        # raise NotImplementedError
        _, out_shape, _ = sym.get_internals().infer_shape(**worker_data_shape)
        out_shape_dictoinary = dict(zip(sym.get_internals().list_outputs(), out_shape))
        sym = attach_quantize_node(sym, out_shape_dictoinary, pQuant.WeightQuantizeParam,
                                   pQuant.ActQuantizeParam, pQuant.quantized_op)
    sym.save(pTest.model.prefix + "_infer_speed.json")


    ctx = mx.gpu(gpu)
    mod = DetModule(sym, data_names=data_names, context=ctx)
    mod.bind(data_shapes=data_shape, for_training=False)
    mod.set_params({}, {}, True)

    # let AUTOTUNE run for once
    mod.forward(data_batch, is_train=False)
    for output in mod.get_outputs():
        output.wait_to_read()

    tic = time.time()
    for _ in range(count):
        mod.forward(data_batch, is_train=False)
        for output in mod.get_outputs():
            output.wait_to_read()
    toc = time.time()

    print((toc - tic) / count * 1000)
예제 #4
0
class predictor(object):
    def __init__(self, config, batch_size, gpu_id, thresh):
        self.config = config
        self.batch_size = batch_size
        self.thresh = thresh

        # Parse the parameter file of model
        pGen, pKv, pRpn, pRoi, pBbox, pDataset, pModel, pOpt, pTest, \
        transform, data_name, label_name, metric_list = config.get_config(is_train=False)

        self.data_name = data_name
        self.label_name = label_name
        self.p_long, self.p_short = transform[1].p.long, transform[1].p.short

        # Define NMS type
        if callable(pTest.nms.type):
            self.do_nms = pTest.nms.type(pTest.nms.thr)
        else:
            from operator_py.nms import py_nms_wrapper

            self.do_nms = py_nms_wrapper(pTest.nms.thr)

        sym = pModel.test_symbol
        sym.save(pTest.model.prefix + "_test.json")

        ctx = mx.gpu(gpu_id)
        data_shape = [
            ('data', (batch_size, 3, 800, 1200)),
            ("im_info", (1, 3)),
            ("im_id", (1, )),
            ("rec_id", (1, )),
        ]

        # Load network
        arg_params, aux_params = load_checkpoint(pTest.model.prefix,
                                                 pTest.model.epoch)
        self.mod = DetModule(sym, data_names=data_name, context=ctx)
        self.mod.bind(data_shapes=data_shape, for_training=False)
        self.mod.set_params(arg_params, aux_params, allow_extra=False)

    def preprocess_image(self, input_img):
        image = input_img[:, :, ::-1]  # BGR -> RGB

        short = min(image.shape[:2])
        long = max(image.shape[:2])
        scale = min(self.p_short / short, self.p_long / long)

        h, w = image.shape[:2]
        im_info = (round(h * scale), round(w * scale), scale)

        image = cv2.resize(image,
                           None,
                           None,
                           scale,
                           scale,
                           interpolation=cv2.INTER_LINEAR)
        image = image.transpose((2, 0, 1))  # HWC -> CHW

        return image, im_info

    def run_image(self, img_path):
        image = cv2.imread(img_path, cv2.IMREAD_COLOR)
        image, im_info = self.preprocess_image(image)
        input_data = {
            'data': [image],
            'im_info': [im_info],
            'im_id': [0],
            'rec_id': [0],
        }

        data = [mx.nd.array(input_data[name]) for name in self.data_name]
        label = []
        provide_data = [(k, v.shape) for k, v in zip(self.data_name, data)]
        provide_label = [(k, v.shape) for k, v in zip(self.label_name, label)]

        data_batch = mx.io.DataBatch(data=data,
                                     label=label,
                                     provide_data=provide_data,
                                     provide_label=provide_label)

        self.mod.forward(data_batch, is_train=False)
        out = [x.asnumpy() for x in self.mod.get_outputs()]

        cls_score = out[3]
        bboxes = out[4]

        result = {}
        for cid in range(cls_score.shape[1]):
            if cid == 0:  # Ignore the background
                continue
            score = cls_score[:, cid]
            if bboxes.shape[1] != 4:
                cls_box = bboxes[:, cid * 4:(cid + 1) * 4]
            else:
                cls_box = bboxes
            valid_inds = np.where(score >= self.thresh)[0]
            box = cls_box[valid_inds]
            score = score[valid_inds]
            det = np.concatenate((box, score.reshape(-1, 1)),
                                 axis=1).astype(np.float32)
            det = self.do_nms(det)
            if len(det) > 0:
                det[:, :4] = det[:, :4] / im_info[
                    2]  # Restore to the original size
                result[CATEGORIES[cid]] = det

        return result
예제 #5
0
class TDNDetector:
    def __init__(self, configFn, ctx, outFolder, threshold):
        os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"
        config = importlib.import_module(configFn.replace('.py', '').replace('/', '.'))
        _,_,_,_,_,_, self.__pModel,_, self.__pTest, self.transform,_,_,_ = config.get_config(is_train=False)
        self.__pModel = patch_config_as_nothrow(self.__pModel)
        self.__pTest = patch_config_as_nothrow(self.__pTest)
        self.resizeParam = (800, 1200)
        if callable(self.__pTest.nms.type):
            self.__nms = self.__pTest.nms.type(self.__pTest.nms.thr)
        else:
            from operator_py.nms import py_nms_wrapper
            self.__nms = py_nms_wrapper(self.__pTest.nms.thr)
        arg_params, aux_params = load_checkpoint(self.__pTest.model.prefix, self.__pTest.model.epoch)
        sym = self.__pModel.test_symbol
        from utils.graph_optimize import merge_bn
        sym, arg_params, aux_params = merge_bn(sym, arg_params, aux_params)
        self.__mod = DetModule(sym, data_names=['data','im_info','im_id','rec_id'], context=ctx)
        self.__mod.bind(data_shapes=[('data', (1, 3, self.resizeParam[0], self.resizeParam[1])), 
                                     ('im_info', (1, 3)),
                                     ('im_id', (1,)),
                                     ('rec_id', (1,))], for_training=False)
        self.__mod.set_params(arg_params, aux_params, allow_extra=False)
        self.__saveSymbol(sym, outFolder, self.__pTest.model.prefix.split('/')[-1])
        self.__threshold = threshold

    def __call__(self, imgFilename): # detect onto image
        roi_record, scale = self.__readImg(imgFilename)
        h, w = roi_record['data'][0].shape

        im_c1 = roi_record['data'][0].reshape(1,1,h,w)
        im_c2 = roi_record['data'][1].reshape(1,1,h,w)
        im_c3 = roi_record['data'][2].reshape(1,1,h,w)
        im_data = np.concatenate((im_c1, im_c2, im_c3), axis=1)

        im_info, im_id, rec_id = [(h, w, scale)], [1], [1] 
        data = mx.io.DataBatch(data=[mx.nd.array(im_data),
                                     mx.nd.array(im_info),
                                     mx.nd.array(im_id),
                                     mx.nd.array(rec_id)])
        self.__mod.forward(data, is_train=False)
        # extract results
        outputs = self.__mod.get_outputs(merge_multi_context=False)
        rid, id, info, cls, box = [x[0].asnumpy() for x in outputs]
        rid, id, info, cls, box = rid.squeeze(), id.squeeze(), info.squeeze(), cls.squeeze(), box.squeeze()
        cls = cls[:, 1:]   # remove background
        box = box / scale
        output_record = dict(rec_id=rid, im_id=id, im_info=info, bbox_xyxy=box, cls_score=cls)
        output_record = self.__pTest.process_output([output_record], None)[0]
        final_result  = self.__do_nms(output_record)
        # obtain representable output
        detections = []
        for cid ,bbox in final_result.items():
            idx = np.where(bbox[:,-1] > self.__threshold)[0] 
            for i in idx:
                final_box = bbox[i][:4]
                score = bbox[i][-1]
                detections.append({'cls':cid, 'box':final_box, 'score':score})
        return detections,None

    def __do_nms(self, all_output):
        box   = all_output['bbox_xyxy']
        score = all_output['cls_score']
        final_dets = {}
        for cid in range(score.shape[1]):

            score_cls = score[:, cid]
            valid_inds = np.where(score_cls > self.__threshold)[0]
            box_cls = box[valid_inds]
            score_cls = score_cls[valid_inds]
            if valid_inds.shape[0]==0:
                continue
            det = np.concatenate((box_cls, score_cls.reshape(-1, 1)), axis=1).astype(np.float32)
            det = self.__nms(det)
            cls = coco[cid]
            final_dets[cls] = det
        return final_dets

    def __readImg(self, imgFilename):
        img = cv2.imread(imgFilename, cv2.IMREAD_COLOR)
        height, width, channels = img.shape
        roi_record = {'gt_bbox': np.array([[0., 0., 0., 0.]]),'gt_class': np.array([0])}
        roi_record['image_url'] = imgFilename
        roi_record['h'] = height
        roi_record['w'] = width
 
        for trans in self.transform:
            trans.apply(roi_record)
        img_shape = [roi_record['h'], roi_record['w']]
        shorts, longs = min(img_shape), max(img_shape)
        scale = min(self.resizeParam[0] / shorts, self.resizeParam[1] / longs)

        return roi_record, scale

    def __saveSymbol(self, sym, outFolder, fnPrefix):
        if not os.path.exists(outFolder): os.makedirs(outFolder)
        resFilename = os.path.join(outFolder, fnPrefix + "_symbol_test.json")
        sym.save(resFilename)
예제 #6
0
class TDNDetector:
    def __init__(self, configFn, ctx, outFolder, threshold):
        os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"
        config = importlib.import_module(
            configFn.replace('.py', '').replace('/', '.'))
        _, _, _, _, _, _, self.__pModel, _, self.__pTest, self.transform, _, _, _ = config.get_config(
            is_train=False)
        self.__pModel = patch_config_as_nothrow(self.__pModel)
        self.__pTest = patch_config_as_nothrow(self.__pTest)
        self.resizeParam = (800, 1200)
        if callable(self.__pTest.nms.type):
            self.__nms = self.__pTest.nms.type(self.__pTest.nms.thr)
        else:
            from operator_py.nms import py_nms_wrapper
            self.__nms = py_nms_wrapper(self.__pTest.nms.thr)
        arg_params, aux_params = load_checkpoint(self.__pTest.model.prefix,
                                                 self.__pTest.model.epoch)
        sym = self.__pModel.test_symbol
        from utils.graph_optimize import merge_bn
        sym, arg_params, aux_params = merge_bn(sym, arg_params, aux_params)
        self.__mod = DetModule(
            sym,
            data_names=['data', 'im_info', 'im_id', 'rec_id'],
            context=ctx)
        self.__mod.bind(data_shapes=[('data', (1, 3, self.resizeParam[0],
                                               self.resizeParam[1])),
                                     ('im_info', (1, 3)), ('im_id', (1, )),
                                     ('rec_id', (1, ))],
                        for_training=False)
        self.__mod.set_params(arg_params, aux_params, allow_extra=False)
        self.__saveSymbol(sym, outFolder,
                          self.__pTest.model.prefix.split('/')[-1])
        self.__threshold = threshold
        self.outFolder = outFolder

    def __call__(self, imgFilename):  # detect onto image
        roi_record, scale, img = self.__readImg(imgFilename)
        h, w = roi_record['data'][0].shape

        im_c1 = roi_record['data'][0].reshape(1, 1, h, w)
        im_c2 = roi_record['data'][1].reshape(1, 1, h, w)
        im_c3 = roi_record['data'][2].reshape(1, 1, h, w)
        im_data = np.concatenate((im_c1, im_c2, im_c3), axis=1)

        im_info, im_id, rec_id = [(h, w, scale)], [1], [1]
        data = mx.io.DataBatch(data=[
            mx.nd.array(im_data),
            mx.nd.array(im_info),
            mx.nd.array(im_id),
            mx.nd.array(rec_id)
        ])
        self.__mod.forward(data, is_train=False)
        # extract results
        outputs = self.__mod.get_outputs(merge_multi_context=False)
        rid, id, info, cls, box = [x[0].asnumpy() for x in outputs]
        rid, id, info, cls, box = rid.squeeze(), id.squeeze(), info.squeeze(
        ), cls.squeeze(), box.squeeze()
        cls = cls[:, 1:]  # remove background
        box = box / scale
        output_record = dict(rec_id=rid,
                             im_id=id,
                             im_info=info,
                             bbox_xyxy=box,
                             cls_score=cls)
        output_record = self.__pTest.process_output([output_record], None)[0]
        final_result = self.__do_nms(output_record)
        # obtain representable output
        detections = []
        for cid, bbox in final_result.items():
            idx = np.where(bbox[:, -1] > self.__threshold)[0]
            for i in idx:
                final_box = bbox[i][:4]
                score = bbox[i][-1]
                detections.append({
                    'cls': cid,
                    'box': final_box,
                    'score': score
                })
        img_vis = self.__vis_detections(detections, img)
        cv2.imwrite(os.path.join(self.outFolder, imgFilename), img_vis)
        #print(os.path.join(self.outFolder,imgFilename))
        return detections, None

    def __vis_detections(self, dets, img):
        font = cv2.FONT_HERSHEY_SIMPLEX
        for d in dets:
            box = d['box']
            clsID = d['cls']
            score = d['score']
            img = cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]),
                                (255, 0, 0), 4)
            img = cv2.putText(img,
                              str(clsID) + ': ' + str(round(score, 2)),
                              (box[0], box[1]), font, 1, (255, 0, 0), 2,
                              cv2.LINE_AA)
        return img

    def __do_nms(self, all_output):
        box = all_output['bbox_xyxy']
        score = all_output['cls_score']
        final_dets = {}
        for cid in range(score.shape[1]):
            score_cls = score[:, cid]
            valid_inds = np.where(score_cls > self.__threshold)[0]
            box_cls = box[valid_inds]
            score_cls = score_cls[valid_inds]
            if valid_inds.shape[0] == 0:
                continue
            det = np.concatenate((box_cls, score_cls.reshape(-1, 1)),
                                 axis=1).astype(np.float32)
            det = self.__nms(det)
            #cls = coco[cid]
            final_dets[cid] = det
        return final_dets

    def __readImg(self, imgFilename):
        img = cv2.imread(imgFilename, cv2.IMREAD_COLOR)
        height, width, channels = img.shape
        roi_record = {
            'gt_bbox': np.array([[0., 0., 0., 0.]]),
            'gt_class': np.array([0])
        }
        roi_record['image_url'] = imgFilename
        roi_record['h'] = height
        roi_record['w'] = width

        for trans in self.transform:
            trans.apply(roi_record)
        img_shape = [roi_record['h'], roi_record['w']]
        shorts, longs = min(img_shape), max(img_shape)
        scale = min(self.resizeParam[0] / shorts, self.resizeParam[1] / longs)

        return roi_record, scale, img

    def __saveSymbol(self, sym, outFolder, fnPrefix):
        if not os.path.exists(outFolder): os.makedirs(outFolder)
        resFilename = os.path.join(outFolder, fnPrefix + "_symbol_test.json")
        sym.save(resFilename)


#import mxnet as mx
#import argparse
#from infer import TDNDetector

#def parse_args():
#    parser = argparse.ArgumentParser(description='Test Detection')
#    parser.add_argument('--config', type=str, default='config/faster_r101v2c4_c5_256roi_1x.py', help='config file path')
#    parser.add_argument('--ctx',    type=int, default=0,     help='GPU index. Set negative value to use CPU')
#    #parser.add_argument('--inputs', type=str, nargs='+', required=True, default='', help='File(-s) to test')
#    parser.add_argument('--output', type=str, default='results', help='Where to store results')
#    parser.add_argument('--threshold', type=float, default=0.5,  help='Detector threshold')
#    return parser.parse_args()

#if __name__ == "__main__":
#    args = parse_args()
#    ctx = mx.gpu(args.ctx) if args.ctx>=0 else args.cpu()
#    #imgFilenames = args.inputs
#    imgFilenames = ['car.jpg', 'COCO_val2014_000000581929.jpg']
#    detector = TDNDetector(args.config, ctx, args.output, args.threshold)
#    for i, imgFilename in enumerate(imgFilenames):
#            print(imgFilename)
#            dets,_= detector(imgFilename)
#            print(dets)