예제 #1
0
파일: run.py 프로젝트: ybin/tinynn
def main(args):
    train_set, valid_set, test_set = prepare_dataset(args.data_dir)
    train_x, train_y = train_set
    test_x, test_y = test_set
    train_y = get_one_hot(train_y, 10)

    if args.model_type == "cnn":
        train_x = train_x.reshape((-1, 28, 28, 1))
        test_x = test_x.reshape((-1, 28, 28, 1))

    if args.model_type == "cnn":
        net = Net([
            Conv2D(kernel=[5, 5, 1, 8], stride=[2, 2], padding="SAME"),
            ReLU(),
            Conv2D(kernel=[5, 5, 8, 16], stride=[2, 2], padding="SAME"),
            ReLU(),
            Conv2D(kernel=[5, 5, 16, 32], stride=[2, 2], padding="SAME"),
            ReLU(),
            Flatten(),
            Dense(10)
        ])
    elif args.model_type == "dense":
        net = Net([
            Dense(200),
            ReLU(),
            Dense(100),
            ReLU(),
            Dense(70),
            ReLU(),
            Dense(30),
            ReLU(),
            Dense(10)
        ])
    else:
        raise ValueError(
            "Invalid argument model_type! Must be 'cnn' or 'dense'")

    model = Model(net=net,
                  loss=SoftmaxCrossEntropyLoss(),
                  optimizer=Adam(lr=args.lr))

    iterator = BatchIterator(batch_size=args.batch_size)
    evaluator = AccEvaluator()
    loss_list = list()
    for epoch in range(args.num_ep):
        t_start = time.time()
        for batch in iterator(train_x, train_y):
            pred = model.forward(batch.inputs)
            loss, grads = model.backward(pred, batch.targets)
            model.apply_grad(grads)
            loss_list.append(loss)
        print("Epoch %d time cost: %.4f" % (epoch, time.time() - t_start))
        # evaluate
        model.set_phase("TEST")
        test_pred = model.forward(test_x)
        test_pred_idx = np.argmax(test_pred, axis=1)
        test_y_idx = np.asarray(test_y)
        res = evaluator.evaluate(test_pred_idx, test_y_idx)
        print(res)
        model.set_phase("TRAIN")
예제 #2
0
파일: run.py 프로젝트: ybin/tinynn
def main(args):
    train_set, valid_set, test_set = prepare_dataset(args.data_dir)
    train_x, train_y = train_set
    test_x, test_y = test_set
    # train_y = get_one_hot(train_y, 2)

    net = Net([Dense(100), ReLU(), Dense(30), ReLU(), Dense(1)])

    model = Model(net=net,
                  loss=SigmoidCrossEntropyLoss(),
                  optimizer=Adam(lr=args.lr))

    iterator = BatchIterator(batch_size=args.batch_size)
    evaluator = AccEvaluator()
    loss_list = list()
    for epoch in range(args.num_ep):
        t_start = time.time()
        for batch in iterator(train_x, train_y):
            pred = model.forward(batch.inputs)
            loss, grads = model.backward(pred, batch.targets)
            model.apply_grad(grads)
            loss_list.append(loss)
        print("Epoch %d time cost: %.4f" % (epoch, time.time() - t_start))
        for timer in model.timers.values():
            timer.report()
        # evaluate
        model.set_phase("TEST")
        test_y_idx = np.asarray(test_y).reshape(-1)
        test_pred = model.forward(test_x)
        test_pred[test_pred > 0] = 1
        test_pred[test_pred <= 0] = 0
        test_pred_idx = test_pred.reshape(-1)
        res = evaluator.evaluate(test_pred_idx, test_y_idx)
        print(res)
        model.set_phase("TRAIN")
예제 #3
0
def main(args):
    if args.seed >= 0:
        random_seed(args.seed)

    train_set, valid_set, test_set = prepare_dataset(args.data_dir)
    train_x, train_y = train_set
    test_x, test_y = test_set
    train_y = get_one_hot(train_y, 10)

    train_x = Tensor(train_x)
    train_y = Tensor(train_y)
    test_x = Tensor(test_x)
    test_y = Tensor(test_y)

    net = Net([
        Dense(200),
        ReLU(),
        Dense(100),
        ReLU(),
        Dense(70),
        ReLU(),
        Dense(30),
        ReLU(),
        Dense(10)
    ])

    model = Model(net=net,
                  loss=SoftmaxCrossEntropyLoss(),
                  optimizer=Adam(lr=args.lr))
    loss_layer = SoftmaxCrossEntropyLoss()
    iterator = BatchIterator(batch_size=args.batch_size)
    evaluator = AccEvaluator()
    loss_list = list()
    for epoch in range(args.num_ep):
        t_start = time.time()
        for batch in iterator(train_x, train_y):
            model.zero_grad()
            pred = model.forward(batch.inputs)
            loss = loss_layer.loss(pred, batch.targets)
            loss.backward()
            model.step()
            loss_list.append(loss.values)
        print("Epoch %d tim cost: %.4f" % (epoch, time.time() - t_start))
        # evaluate
        model.set_phase("TEST")
        test_pred = model.forward(test_x)
        test_pred_idx = np.argmax(test_pred, axis=1)
        test_y_idx = test_y.values
        res = evaluator.evaluate(test_pred_idx, test_y_idx)
        print(res)
        model.set_phase("TRAIN")
예제 #4
0
파일: run.py 프로젝트: alvinox/exercise
def main(args):
    train_set, valid_set, test_set = prepare_dataset(args.data_dir)
    train_x, train_y = train_set
    test_x, test_y = test_set
    train_y = get_one_hot(train_y, 10)

    net = Net([
        Dense(784, 200),
        ReLU(),
        Dense(200, 100),
        ReLU(),
        Dense(100, 70),
        ReLU(),
        Dense(70, 30),
        ReLU(),
        Dense(30, 10)
    ])

    model = Model(net=net,
                  loss=SoftmaxCrossEntropyLoss(),
                  optimizer=Adam(lr=args.lr))

    iterator = BatchIterator(batch_size=args.batch_size)
    evaluator = AccEvaluator()
    loss_list = list()
    for epoch in range(args.num_ep):
        t_start = time.time()
        for batch in iterator(train_x, train_y):
            pred = model.forward(batch.inputs)
            loss, grads = model.backward(pred, batch.targets)
            model.apply_grad(grads)
            loss_list.append(loss)
        t_end = time.time()
        # evaluate
        test_pred = model.forward(test_x)
        test_pred_idx = np.argmax(test_pred, axis=1)
        test_y_idx = np.asarray(test_y)
        res = evaluator.evaluate(test_pred_idx, test_y_idx)
        print("Epoch %d time cost: %.4f\t %s" % (epoch, t_end - t_start, res))