def __init__(self): """ Initialization of the Main window. This is directly called after the Logger has been initialized. The Function loads the GUI, creates the used Classes and connects the actions to the GUI. """ self.config_window = ConfigWindow(g.config.makeConfigWidgets(), g.config.var_dict, g.config.var_dict.configspec, self) self.canvas_scene = None #Load the post-processor configuration and build the post-processor configuration window self.MyPostProcessor = MyPostProcessor() # If string version_mismatch isn't empty, we popup an error and exit self.filename = "" self.valuesDXF = None self.shapes = Shapes([]) self.entityRoot = None self.layerContents = Layers([]) self.newNumber = 1 self.cont_dx = 0.0 self.cont_dy = 0.0 self.cont_rotate = 0.0 self.cont_scale = 1.0
def __init__(self, parent=None): super(GLWidget, self).__init__(parent) self.shapes = Shapes([]) self.orientation = 0 self.wpZero = 0 self.routearrows = [] self.expprv = None self.isPanning = False self.isRotating = False self.isMultiSelect = False self._lastPos = QPoint() self.posX = 0.0 self.posY = 0.0 self.posZ = 0.0 self.rotX = 0.0 self.rotY = 0.0 self.rotZ = 0.0 self.scale = 1.0 self.scaleCorr = 1.0 self.showPathDirections = False self.showDisabledPaths = False self.topLeft = Point() self.bottomRight = Point() self.tol = 0
def __init__(self, app): """ Initialization of the Main window. This is directly called after the Logger has been initialized. The Function loads the GUI, creates the used Classes and connects the actions to the GUI. """ QMainWindow.__init__(self) # Build the configuration window self.config_window = ConfigWindow(g.config.makeConfigWidgets(), g.config.var_dict, g.config.var_dict.configspec, self) self.config_window.finished.connect(self.updateConfiguration) self.app = app self.ui = Ui_MainWindow() self.ui.setupUi(self) self.showMaximized() self.canvas = self.ui.canvas if g.config.mode3d: self.canvas_scene = self.canvas else: self.canvas_scene = None self.TreeHandler = TreeHandler(self.ui) self.configuration_changed.connect( self.TreeHandler.updateConfiguration) #Load the post-processor configuration and build the post-processor configuration window self.MyPostProcessor = MyPostProcessor() # If string version_mismatch isn't empty, we popup an error and exit if self.MyPostProcessor.version_mismatch: error_message = QMessageBox(QMessageBox.Critical, 'Configuration error', self.MyPostProcessor.version_mismatch) sys.exit(error_message.exec_()) self.d2g = Project(self) self.createActions() self.connectToolbarToConfig() self.filename = "" self.valuesDXF = None self.shapes = Shapes([]) self.entityRoot = None self.layerContents = Layers([]) self.newNumber = 1 self.cont_dx = 0.0 self.cont_dy = 0.0 self.cont_rotate = 0.0 self.cont_scale = 1.0
def makeShapes(self): self.entityRoot = EntityContent(nr=0, name='Entities', parent=None, p0=Point(self.cont_dx, self.cont_dy), pb=Point(), sca=[self.cont_scale, self.cont_scale, self.cont_scale], rot=self.cont_rotate) self.layerContents = Layers([]) self.shapes = Shapes([]) self.makeEntityShapes(self.entityRoot) for layerContent in self.layerContents: layerContent.overrideDefaults() self.layerContents.sort(key=lambda x: x.nr) self.newNumber = len(self.shapes)
def __init__(self, app): """ Initialization of the Main window. This is directly called after the Logger has been initialized. The Function loads the GUI, creates the used Classes and connects the actions to the GUI. """ QMainWindow.__init__(self) #Build the configuration window self.config_window = ConfigWindow(g.config.makeConfigWindgets(), g.config.var_dict, g.config.var_dict.configspec, self) self.config_window.finished.connect(self.updateConfiguration) self.app = app self.ui = Ui_MainWindow() self.ui.setupUi(self) self.canvas = self.ui.canvas if g.config.mode3d: self.canvas_scene = self.canvas else: self.canvas_scene = None self.TreeHandler = TreeHandler(self.ui) self.configuration_changed.connect(self.TreeHandler.updateConfiguration) self.MyPostProcessor = MyPostProcessor() self.d2g = Project(self) self.createActions() self.connectToolbarToConfig() self.filename = "" self.valuesDXF = None self.shapes = Shapes([]) self.entityRoot = None self.layerContents = Layers([]) self.newNumber = 1 self.cont_dx = 0.0 self.cont_dy = 0.0 self.cont_rotate = 0.0 self.cont_scale = 1.0
def __init__(self, dxf_filename): ''' dxf_object initialization ''' self.dxf_filename = dxf_filename self.values_dxf = None self.shapes = Shapes([]) self.entity_root = None self.layer_contents = Layers([]) self.newNumber = 1 self.cont_dx = 0.0 self.cont_dy = 0.0 self.cont_rotate = 0.0 self.cont_scale = 1.0 self.file_name = "" self.my_post_processor = MyPostProcessor(script_dir)
def resetAll(self): # the wpzero is currently generated "last" if self.wpZero > 0: GL.glDeleteLists(self.orientation + 1, self.wpZero - self.orientation) self.shapes = Shapes([]) self.wpZero = 0 self.delete_opt_paths() self.posX = 0.0 self.posY = 0.0 self.posZ = 0.0 self.rotX = 0.0 self.rotY = 0.0 self.rotZ = 0.0 self.scale = 1.0 self.topLeft = Point() self.bottomRight = Point() self.update()
def resetAll(self): self.gl.glDeleteLists(1, self.orientation) # the orientation arrows are currently generated last self.shapes = Shapes([]) self.wpZero = 0 self.orientation = 0 self.delete_opt_paths() self.posX = 0.0 self.posY = 0.0 self.posZ = 0.0 self.rotX = 0.0 self.rotY = 0.0 self.rotZ = 0.0 self.scale = 1.0 self.topLeft = Point() self.bottomRight = Point() self.update()
def resetAll(self): # the wpzero is currently generated "last" if self.wpZero > 0: GL.glDeleteLists(self.orientation + 1, self.wpZero - self.orientation) self.shapes = Shapes([]) self.wpZero = 0 self.delete_opt_paths() self.posX = 0.0 self.posY = 0.0 self.posZ = 0.0 self.rotX = 0.0 self.rotY = 0.0 self.rotZ = 0.0 self.scale = 1.0 self.BB = BoundingBox() self.update()
class GLWidget(CanvasBase): CAM_LEFT_X = -0.5 CAM_RIGHT_X = 0.5 CAM_BOTTOM_Y = 0.5 CAM_TOP_Y = -0.5 CAM_NEAR_Z = -14.0 CAM_FAR_Z = 14.0 COLOR_BACKGROUND = QColor.fromHsl(160, 0, 255, 255) COLOR_NORMAL = QColor.fromCmykF(1.0, 0.5, 0.0, 0.0, 1.0) COLOR_SELECT = QColor.fromCmykF(0.0, 1.0, 0.9, 0.0, 1.0) COLOR_NORMAL_DISABLED = QColor.fromCmykF(1.0, 0.5, 0.0, 0.0, 0.25) COLOR_SELECT_DISABLED = QColor.fromCmykF(0.0, 1.0, 0.9, 0.0, 0.25) COLOR_ENTRY_ARROW = QColor.fromRgbF(0.0, 0.0, 1.0, 1.0) COLOR_EXIT_ARROW = QColor.fromRgbF(0.0, 1.0, 0.0, 1.0) COLOR_ROUTE = QColor.fromRgbF(0.5, 0.0, 0.0, 1.0) COLOR_STMOVE = QColor.fromRgbF(0.5, 0.0, 0.25, 1.0) COLOR_BREAK = QColor.fromRgbF(1.0, 0.0, 1.0, 0.7) COLOR_LEFT = QColor.fromHsl(134, 240, 130, 255) COLOR_RIGHT = QColor.fromHsl(186, 240, 130, 255) def __init__(self, parent=None): super(GLWidget, self).__init__(parent) self.shapes = Shapes([]) self.orientation = 0 self.wpZero = 0 self.routearrows = [] self.expprv = None self.isPanning = False self.isRotating = False self.isMultiSelect = False self._lastPos = QPoint() self.posX = 0.0 self.posY = 0.0 self.posZ = 0.0 self.rotX = 0.0 self.rotY = 0.0 self.rotZ = 0.0 self.scale = 1.0 self.scaleCorr = 1.0 self.showPathDirections = False self.showDisabledPaths = False self.topLeft = Point() self.bottomRight = Point() self.tol = 0 def tr(self, string_to_translate): """ Translate a string using the QCoreApplication translation framework @param string_to_translate: a unicode string @return: the translated unicode string if it was possible to translate """ return text_type( QCoreApplication.translate('GLWidget', string_to_translate)) def resetAll(self): # the wpzero is currently generated "last" if self.wpZero > 0: GL.glDeleteLists(self.orientation + 1, self.wpZero - self.orientation) self.shapes = Shapes([]) self.wpZero = 0 self.delete_opt_paths() self.posX = 0.0 self.posY = 0.0 self.posZ = 0.0 self.rotX = 0.0 self.rotY = 0.0 self.rotZ = 0.0 self.scale = 1.0 self.topLeft = Point() self.bottomRight = Point() self.update() def delete_opt_paths(self): if len(self.routearrows) > 0: GL.glDeleteLists(self.routearrows[0][2], len(self.routearrows)) self.routearrows = [] def addexproutest(self): self.expprv = Point3D( g.config.vars.Plane_Coordinates['axis1_start_end'], g.config.vars.Plane_Coordinates['axis2_start_end'], 0) def addexproute(self, exp_order, layer_nr): """ This function initialises the Arrows of the export route order and its numbers. """ for shape_nr in range(len(exp_order)): shape = self.shapes[exp_order[shape_nr]] st = self.expprv en, self.expprv = shape.get_start_end_points_physical() en = en.to3D(shape.axis3_start_mill_depth) self.expprv = self.expprv.to3D(shape.axis3_mill_depth) self.routearrows.append([st, en, 0]) # TODO self.routetext.append(RouteText(text=("%s,%s" % (layer_nr, shape_nr+1)), startp=en)) def addexprouteen(self): st = self.expprv en = Point3D(g.config.vars.Plane_Coordinates['axis1_start_end'], g.config.vars.Plane_Coordinates['axis2_start_end'], 0) self.routearrows.append([st, en, 0]) for route in self.routearrows: route[2] = self.makeRouteArrowHead(route[0], route[1]) def contextMenuEvent(self, event): if not self.isRotating: clicked, offset, _ = self.getClickedDetails(event) MyDropDownMenu(self, event.globalPos(), clicked, offset) def setXRotation(self, angle): self.rotX = self.normalizeAngle(angle) def setYRotation(self, angle): self.rotY = self.normalizeAngle(angle) def setZRotation(self, angle): self.rotZ = self.normalizeAngle(angle) def normalizeAngle(self, angle): return (angle - 180) % -360 + 180 def mousePressEvent(self, event): if self.isPanning or self.isRotating: self.setCursor(Qt.ClosedHandCursor) elif event.button() == Qt.LeftButton: clicked, offset, tol = self.getClickedDetails(event) xyForZ = {} for shape in self.shapes: hit = False z = shape.axis3_start_mill_depth if z not in xyForZ: xyForZ[z] = self.determineSelectedPosition( clicked, z, offset) hit |= shape.isHit(xyForZ[z], tol) if not hit: z = shape.axis3_mill_depth if z not in xyForZ: xyForZ[z] = self.determineSelectedPosition( clicked, z, offset) hit |= shape.isHit(xyForZ[z], tol) if self.isMultiSelect and shape.selected: hit = not hit if hit != shape.selected: g.window.TreeHandler.updateShapeSelection(shape, hit) shape.selected = hit self.update() self._lastPos = event.pos() def getClickedDetails(self, event): min_side = min(self.frameSize().width(), self.frameSize().height()) clicked = Point( (event.pos().x() - self.frameSize().width() / 2), (event.pos().y() - self.frameSize().height() / 2)) / min_side / self.scale offset = Point3D(-self.posX, -self.posY, -self.posZ) / self.scale tol = 4 * self.scaleCorr / min_side / self.scale return clicked, offset, tol def determineSelectedPosition(self, clicked, forZ, offset): angleX = -radians(self.rotX) angleY = -radians(self.rotY) zv = forZ - offset.z clickedZ = ((zv + clicked.x * sin(angleY)) / cos(angleY) - clicked.y * sin(angleX)) / cos(angleX) sx, sy, sz = self.deRotate(clicked.x, clicked.y, clickedZ) return Point(sx + offset.x, -sy - offset.y) #, sz + offset.z def mouseReleaseEvent(self, event): if event.button() == Qt.LeftButton or event.button() == Qt.RightButton: if self.isPanning: self.setCursor(Qt.OpenHandCursor) elif self.isRotating: self.setCursor(Qt.PointingHandCursor) def mouseMoveEvent(self, event): dx = event.pos().x() - self._lastPos.x() dy = event.pos().y() - self._lastPos.y() if self.isRotating: if event.buttons() == Qt.LeftButton: self.setXRotation(self.rotX - dy / 2) self.setYRotation(self.rotY + dx / 2) elif event.buttons() == Qt.RightButton: self.setXRotation(self.rotX - dy / 2) self.setZRotation(self.rotZ + dx / 2) elif self.isPanning: if event.buttons() == Qt.LeftButton: min_side = min(self.frameSize().width(), self.frameSize().height()) dx, dy, dz = self.deRotate(dx, dy, 0) self.posX += dx / min_side self.posY += dy / min_side self.posZ += dz / min_side self._lastPos = event.pos() self.update() def wheelEvent(self, event): min_side = min(self.frameSize().width(), self.frameSize().height()) x = (event.pos().x() - self.frameSize().width() / 2) / min_side y = (event.pos().y() - self.frameSize().height() / 2) / min_side s = 1.001**event.angleDelta().y() x, y, z = self.deRotate(x, y, 0) self.posX = (self.posX - x) * s + x self.posY = (self.posY - y) * s + y self.posZ = (self.posZ - z) * s + z self.scale *= s self.update() def rotate(self, x, y, z): angleZ = radians(self.rotZ) x, y, z = x * cos(angleZ) - y * sin(angleZ), x * sin(angleZ) + y * cos( angleZ), z angleY = radians(self.rotY) x, y, z = x * cos(angleY) + z * sin(angleY), y, -x * sin( angleY) + z * cos(angleY) angleX = radians(self.rotX) return x, y * cos(angleX) - z * sin(angleX), y * sin(angleX) + z * cos( angleX) def deRotate(self, x, y, z): angleX = -radians(self.rotX) x, y, z = x, y * cos(angleX) - z * sin(angleX), y * sin( angleX) + z * cos(angleX) angleY = -radians(self.rotY) x, y, z = x * cos(angleY) + z * sin(angleY), y, -x * sin( angleY) + z * cos(angleY) angleZ = -radians(self.rotZ) return x * cos(angleZ) - y * sin(angleZ), x * sin(angleZ) + y * cos( angleZ), z def getRotationVectors(self, orgRefVector, toRefVector): """ Generate a rotation matrix such that toRefVector = matrix * orgRefVector @param orgRefVector: A 3D unit vector @param toRefVector: A 3D unit vector @return: 3 vectors such that matrix = [vx; vy; vz] """ # based on: # http://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d if orgRefVector == toRefVector: return Point3D(1, 0, 0), Point3D(0, 1, 0), Point3D(0, 0, 1) v = orgRefVector.cross_product(toRefVector) mn = (1 - orgRefVector * toRefVector) / v.length_squared() vx = Point3D( 1, -v.z, v.y) + mn * Point3D(-v.y**2 - v.z**2, v.x * v.y, v.x * v.z) vy = Point3D( v.z, 1, -v.x) + mn * Point3D(v.x * v.y, -v.x**2 - v.z**2, v.y * v.z) vz = Point3D(-v.y, v.x, 1) + mn * Point3D(v.x * v.z, v.y * v.z, -v.x**2 - v.y**2) return vx, vy, vz def initializeGL(self): logger.debug( self.tr("Using OpenGL version: %s") % GL.glGetString(GL.GL_VERSION).decode("utf-8")) self.setClearColor(GLWidget.COLOR_BACKGROUND) GL.glEnable(GL.GL_MULTISAMPLE) GL.glEnable(GL.GL_POLYGON_SMOOTH) GL.glHint(GL.GL_POLYGON_SMOOTH_HINT, GL.GL_NICEST) # GL.glPolygonMode(GL.GL_FRONT_AND_BACK, GL.GL_LINE) GL.glShadeModel(GL.GL_SMOOTH) GL.glEnable(GL.GL_DEPTH_TEST) GL.glEnable(GL.GL_CULL_FACE) # GL.glEnable(GL.GL_LIGHTING) # GL.glEnable(GL.GL_LIGHT0) GL.glEnable(GL.GL_BLEND) GL.glBlendFunc(GL.GL_SRC_ALPHA, GL.GL_ONE_MINUS_SRC_ALPHA) # GL.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, (0.5, 5.0, 7.0, 1.0)) # GL.glEnable(GL.GL_NORMALIZE) self.drawOrientationArrows() def paintGL(self): # The last transformation you specify takes place first. GL.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT) GL.glLoadIdentity() GL.glRotatef(self.rotX, 1.0, 0.0, 0.0) GL.glRotatef(self.rotY, 0.0, 1.0, 0.0) GL.glRotatef(self.rotZ, 0.0, 0.0, 1.0) GL.glTranslatef(self.posX, self.posY, self.posZ) GL.glScalef(self.scale, self.scale, self.scale) for shape in self.shapes.selected_iter(): if not shape.disabled: self.setColor(GLWidget.COLOR_STMOVE) GL.glCallList(shape.drawStMove) self.setColor(GLWidget.COLOR_SELECT) GL.glCallList(shape.drawObject) elif self.showDisabledPaths: self.setColor(GLWidget.COLOR_SELECT_DISABLED) GL.glCallList(shape.drawObject) for shape in self.shapes.not_selected_iter(): if not shape.disabled: if shape.parentLayer.isBreakLayer(): self.setColor(GLWidget.COLOR_BREAK) elif shape.cut_cor == 41: self.setColor(GLWidget.COLOR_LEFT) elif shape.cut_cor == 42: self.setColor(GLWidget.COLOR_RIGHT) else: self.setColor(GLWidget.COLOR_NORMAL) GL.glCallList(shape.drawObject) if self.showPathDirections: self.setColor(GLWidget.COLOR_STMOVE) GL.glCallList(shape.drawStMove) elif self.showDisabledPaths: self.setColor(GLWidget.COLOR_NORMAL_DISABLED) GL.glCallList(shape.drawObject) # optimization route arrows self.setColor(GLWidget.COLOR_ROUTE) GL.glBegin(GL.GL_LINES) for route in self.routearrows: start = route[0] end = route[1] GL.glVertex3f(start.x, -start.y, start.z) GL.glVertex3f(end.x, -end.y, end.z) GL.glEnd() GL.glScalef(self.scaleCorr / self.scale, self.scaleCorr / self.scale, self.scaleCorr / self.scale) scaleArrow = self.scale / self.scaleCorr for route in self.routearrows: end = scaleArrow * route[1] GL.glTranslatef(end.x, -end.y, end.z) GL.glCallList(route[2]) GL.glTranslatef(-end.x, end.y, -end.z) # direction arrows for shape in self.shapes: if shape.selected and (not shape.disabled or self.showDisabledPaths) or\ self.showPathDirections and not shape.disabled: start, end = shape.get_start_end_points_physical() start = scaleArrow * start.to3D(shape.axis3_start_mill_depth) end = scaleArrow * end.to3D(shape.axis3_mill_depth) GL.glTranslatef(start.x, -start.y, start.z) GL.glCallList(shape.drawArrowsDirection[0]) GL.glTranslatef(-start.x, start.y, -start.z) GL.glTranslatef(end.x, -end.y, end.z) GL.glCallList(shape.drawArrowsDirection[1]) GL.glTranslatef(-end.x, end.y, -end.z) if self.wpZero > 0: GL.glCallList(self.wpZero) GL.glTranslatef(-self.posX / self.scaleCorr, -self.posY / self.scaleCorr, -self.posZ / self.scaleCorr) GL.glCallList(self.orientation) def resizeGL(self, width, height): GL.glViewport(0, 0, width, height) side = min(width, height) GL.glMatrixMode(GL.GL_PROJECTION) GL.glLoadIdentity() if width >= height: scale_x = width / height GL.glOrtho(GLWidget.CAM_LEFT_X * scale_x, GLWidget.CAM_RIGHT_X * scale_x, GLWidget.CAM_BOTTOM_Y, GLWidget.CAM_TOP_Y, GLWidget.CAM_NEAR_Z, GLWidget.CAM_FAR_Z) else: scale_y = height / width GL.glOrtho(GLWidget.CAM_LEFT_X, GLWidget.CAM_RIGHT_X, GLWidget.CAM_BOTTOM_Y * scale_y, GLWidget.CAM_TOP_Y * scale_y, GLWidget.CAM_NEAR_Z, GLWidget.CAM_FAR_Z) self.scaleCorr = 400 / side GL.glMatrixMode(GL.GL_MODELVIEW) def setClearColor(self, c): GL.glClearColor(c.redF(), c.greenF(), c.blueF(), c.alphaF()) def setColor(self, c): self.setColorRGBA(c.redF(), c.greenF(), c.blueF(), c.alphaF()) def setColorRGBA(self, r, g, b, a): # GL.glMaterialfv(GL.GL_FRONT, GL.GL_DIFFUSE, (r, g, b, a)) GL.glColor4f(r, g, b, a) def plotAll(self, shapes): for shape in shapes: self.paint_shape(shape) self.shapes.append(shape) self.drawWpZero() def repaint_shape(self, shape): GL.glDeleteLists(shape.drawObject, 4) self.paint_shape(shape) def paint_shape(self, shape): shape.drawObject = self.makeShape(shape) # 1 object shape.stmove = StMove(shape) shape.drawStMove = self.makeStMove(shape.stmove) # 1 object shape.drawArrowsDirection = self.makeDirArrows(shape) # 2 objects def makeShape(self, shape): genList = GL.glGenLists(1) GL.glNewList(genList, GL.GL_COMPILE) GL.glBegin(GL.GL_LINES) shape.make_path(self.drawHorLine, self.drawVerLine) GL.glEnd() GL.glEndList() self.topLeft.detTopLeft(shape.topLeft) self.bottomRight.detBottomRight(shape.bottomRight) return genList def makeStMove(self, stmove): genList = GL.glGenLists(1) GL.glNewList(genList, GL.GL_COMPILE) GL.glBegin(GL.GL_LINES) stmove.make_path(self.drawHorLine, self.drawVerLine) GL.glEnd() GL.glEndList() return genList def drawHorLine(self, caller, Ps, Pe): GL.glVertex3f(Ps.x, -Ps.y, caller.axis3_start_mill_depth) GL.glVertex3f(Pe.x, -Pe.y, caller.axis3_start_mill_depth) GL.glVertex3f(Ps.x, -Ps.y, caller.axis3_mill_depth) GL.glVertex3f(Pe.x, -Pe.y, caller.axis3_mill_depth) def drawVerLine(self, caller, Ps): GL.glVertex3f(Ps.x, -Ps.y, caller.axis3_start_mill_depth) GL.glVertex3f(Ps.x, -Ps.y, caller.axis3_mill_depth) def drawOrientationArrows(self): rCone = 0.01 rCylinder = 0.004 zTop = 0.05 zMiddle = 0.02 zBottom = -0.03 segments = 20 arrow = GL.glGenLists(1) GL.glNewList(arrow, GL.GL_COMPILE) self.drawCone(Point(), rCone, zTop, zMiddle, segments) self.drawSolidCircle(Point(), rCone, zMiddle, segments) self.drawCylinder(Point(), rCylinder, zMiddle, zBottom, segments) self.drawSolidCircle(Point(), rCylinder, zBottom, segments) GL.glEndList() self.orientation = GL.glGenLists(1) GL.glNewList(self.orientation, GL.GL_COMPILE) self.setColorRGBA(0.0, 0.0, 1.0, 0.5) GL.glCallList(arrow) GL.glRotatef(90, 0, 1, 0) self.setColorRGBA(1.0, 0.0, 0.0, 0.5) GL.glCallList(arrow) GL.glRotatef(90, 1, 0, 0) self.setColorRGBA(0.0, 1.0, 0.0, 0.5) GL.glCallList(arrow) GL.glEndList() def drawWpZero(self): r = 0.02 segments = 20 # must be a multiple of 4 self.wpZero = GL.glGenLists(1) GL.glNewList(self.wpZero, GL.GL_COMPILE) self.setColorRGBA(0.2, 0.2, 0.2, 0.7) self.drawSphere(r, segments, segments // 4, segments, segments // 4) GL.glBegin(GL.GL_TRIANGLE_FAN) GL.glVertex3f(0, 0, 0) for i in range(segments // 4 + 1): ang = -i * 2 * pi / segments xy2 = Point().get_arc_point(ang, r) # GL.glNormal3f(0, -1, 0) GL.glVertex3f(xy2.x, 0, xy2.y) for i in range(segments // 4 + 1): ang = -i * 2 * pi / segments xy2 = Point().get_arc_point(ang, r) # GL.glNormal3f(-1, 0, 0) GL.glVertex3f(0, -xy2.y, -xy2.x) for i in range(segments // 4 + 1): ang = -i * 2 * pi / segments xy2 = Point().get_arc_point(ang, r) # GL.glNormal3f(0, 0, 1) GL.glVertex3f(-xy2.y, xy2.x, 0) GL.glEnd() self.setColorRGBA(0.6, 0.6, 0.6, 0.5) self.drawSphere(r * 1.25, segments, segments, segments, segments) GL.glEndList() def drawSphere(self, r, lats, mlats, longs, mlongs): lats //= 2 # based on http://www.cburch.com/cs/490/sched/feb8/index.html for i in range(mlats): lat0 = pi * (-0.5 + i / lats) z0 = r * sin(lat0) zr0 = r * cos(lat0) lat1 = pi * (-0.5 + (i + 1) / lats) z1 = r * sin(lat1) zr1 = r * cos(lat1) GL.glBegin(GL.GL_QUAD_STRIP) for j in range(mlongs + 1): lng = 2 * pi * j / longs x = cos(lng) y = sin(lng) GL.glNormal3f(x * zr0, y * zr0, z0) GL.glVertex3f(x * zr0, y * zr0, z0) GL.glNormal3f(x * zr1, y * zr1, z1) GL.glVertex3f(x * zr1, y * zr1, z1) GL.glEnd() def drawSolidCircle(self, origin, r, z, segments): GL.glBegin(GL.GL_TRIANGLE_FAN) # GL.glNormal3f(0, 0, -1) GL.glVertex3f(origin.x, -origin.y, z) for i in range(segments + 1): ang = -i * 2 * pi / segments xy2 = origin.get_arc_point(ang, r) GL.glVertex3f(xy2.x, -xy2.y, z) GL.glEnd() def drawCone(self, origin, r, zTop, zBottom, segments): GL.glBegin(GL.GL_TRIANGLE_FAN) GL.glVertex3f(origin.x, -origin.y, zTop) for i in range(segments + 1): ang = i * 2 * pi / segments xy2 = origin.get_arc_point(ang, r) # GL.glNormal3f(xy2.x, -xy2.y, zBottom) GL.glVertex3f(xy2.x, -xy2.y, zBottom) GL.glEnd() def drawCylinder(self, origin, r, zTop, zBottom, segments): GL.glBegin(GL.GL_QUAD_STRIP) for i in range(segments + 1): ang = i * 2 * pi / segments xy = origin.get_arc_point(ang, r) # GL.glNormal3f(xy.x, -xy.y, 0) GL.glVertex3f(xy.x, -xy.y, zTop) GL.glVertex3f(xy.x, -xy.y, zBottom) GL.glEnd() def makeDirArrows(self, shape): (start, start_dir), (end, end_dir) = shape.get_start_end_points_physical( None, False) startArrow = GL.glGenLists(1) GL.glNewList(startArrow, GL.GL_COMPILE) self.setColor(GLWidget.COLOR_ENTRY_ARROW) self.drawDirArrow(Point3D(), start_dir.to3D(), True) GL.glEndList() endArrow = GL.glGenLists(1) GL.glNewList(endArrow, GL.GL_COMPILE) self.setColor(GLWidget.COLOR_EXIT_ARROW) self.drawDirArrow(Point3D(), end_dir.to3D(), False) GL.glEndList() return startArrow, endArrow def drawDirArrow(self, origin, direction, startError): offset = 0.0 if startError else 0.05 zMiddle = -0.02 + offset zBottom = -0.05 + offset rx, ry, rz = self.getRotationVectors(Point3D(0, 0, 1), direction) self.drawArrowHead(origin, rx, ry, rz, offset) GL.glBegin(GL.GL_LINES) zeroMiddle = Point3D(0, 0, zMiddle) GL.glVertex3f(zeroMiddle * rx + origin.x, -zeroMiddle * ry - origin.y, zeroMiddle * rz + origin.z) zeroBottom = Point3D(0, 0, zBottom) GL.glVertex3f(zeroBottom * rx + origin.x, -zeroBottom * ry - origin.y, zeroBottom * rz + origin.z) GL.glEnd() def makeRouteArrowHead(self, start, end): if end == start: direction = Point3D(0, 0, 1) else: direction = (end - start).unit_vector() rx, ry, rz = self.getRotationVectors(Point3D(0, 0, 1), direction) head = GL.glGenLists(1) GL.glNewList(head, GL.GL_COMPILE) self.drawArrowHead(Point3D(), rx, ry, rz, 0) GL.glEndList() return head def drawArrowHead(self, origin, rx, ry, rz, offset): r = 0.01 segments = 10 zTop = 0 + offset zBottom = -0.02 + offset GL.glBegin(GL.GL_TRIANGLE_FAN) zeroTop = Point3D(0, 0, zTop) GL.glVertex3f(zeroTop * rx + origin.x, -zeroTop * ry - origin.y, zeroTop * rz + origin.z) for i in range(segments + 1): ang = i * 2 * pi / segments xy2 = Point().get_arc_point(ang, r).to3D(zBottom) GL.glVertex3f(xy2 * rx + origin.x, -xy2 * ry - origin.y, xy2 * rz + origin.z) GL.glEnd() GL.glBegin(GL.GL_TRIANGLE_FAN) zeroBottom = Point3D(0, 0, zBottom) GL.glVertex3f(zeroBottom * rx + origin.x, -zeroBottom * ry - origin.y, zeroBottom * rz + origin.z) for i in range(segments + 1): ang = -i * 2 * pi / segments xy2 = Point().get_arc_point(ang, r).to3D(zBottom) GL.glVertex3f(xy2 * rx + origin.x, -xy2 * ry - origin.y, xy2 * rz + origin.z) GL.glEnd() def setShowPathDirections(self, flag): self.showPathDirections = flag def setShowDisabledPaths(self, flag=True): self.showDisabledPaths = flag def autoscale(self): # TODO currently only works correctly when object is not rotated if self.frameSize().width() >= self.frameSize().height(): aspect_scale_x = self.frameSize().width() / self.frameSize( ).height() aspect_scale_y = 1 else: aspect_scale_x = 1 aspect_scale_y = self.frameSize().height() / self.frameSize( ).width() scaleX = (GLWidget.CAM_RIGHT_X - GLWidget.CAM_LEFT_X ) * aspect_scale_x / (self.bottomRight.x - self.topLeft.x) scaleY = (GLWidget.CAM_BOTTOM_Y - GLWidget.CAM_TOP_Y ) * aspect_scale_y / (self.topLeft.y - self.bottomRight.y) self.scale = min(scaleX, scaleY) * 0.95 self.posX = ((GLWidget.CAM_LEFT_X + GLWidget.CAM_RIGHT_X) * 0.95 * aspect_scale_x - (self.topLeft.x + self.bottomRight.x) * self.scale) / 2 self.posY = -((GLWidget.CAM_TOP_Y + GLWidget.CAM_BOTTOM_Y) * 0.95 * aspect_scale_y - (self.topLeft.y + self.bottomRight.y) * self.scale) / 2 self.posZ = 0 self.update() def topView(self): self.rotX = 0 self.rotY = 0 self.rotZ = 0 self.update() def isometricView(self): self.rotX = -22 self.rotY = -22 self.rotZ = 0 self.update()
class Main(): ''' This is the main class of the script ''' def __init__(self, dxf_filename): ''' dxf_object initialization ''' self.dxf_filename = dxf_filename self.values_dxf = None self.shapes = Shapes([]) self.entity_root = None self.layer_contents = Layers([]) self.newNumber = 1 self.cont_dx = 0.0 self.cont_dy = 0.0 self.cont_rotate = 0.0 self.cont_scale = 1.0 self.file_name = "" self.my_post_processor = MyPostProcessor(script_dir) def load(self): """ Loads the file given by self.file_name. This function is called when a dxf file is selected. """ g.config = MyConfig(script_dir) self.values_dxf = ReadDXF(self.dxf_filename) # Output to the logfile logger.info(('Loaded layers: %s') % len(self.values_dxf.layers)) logger.info( ('Loaded blocks: %s') % len(self.values_dxf.blocks.Entities)) # Output to the logfile for i in range(len(self.values_dxf.blocks.Entities)): layers = self.values_dxf.blocks.Entities[i].get_used_layers() logger.info(("Block %i includes %i Geometries, reduced to %i " "Contours, used layers: %s") % (i, len(self.values_dxf.blocks.Entities[i].geo), len(self.values_dxf.blocks.Entities[i].cont), layers)) layers = self.values_dxf.entities.get_used_layers() insert_nr = self.values_dxf.entities.get_insert_nr() # Output to the logfile logger.info(("Loaded %i entity geometries; reduced to %i contours; " "used layers: %s; number of inserts %i") % (len(self.values_dxf.entities.geo), len(self.values_dxf.entities.cont), layers, insert_nr)) # Output to the logfile if g.config.metric == 0: logger.info("Drawing units: inches") else: logger.info("Drawing units: millimeters") self.makeShapes() self.call_stmove(self.shapes) self.exportShapes() def call_stmove(self, shapes): """ The parameters are generally offset the base geometry. """ for shape in shapes: shape.stmove = self.create_stmove(shape) def create_stmove(self, shape): """ This function creates the Additional Start and End Moves in the plot window when the shape is selected @param shape: The shape for which the Move shall be created. """ stmove = StMoveGUI(shape) return stmove def makeShapes(self): self.entity_root = EntityContent( nr=0, name='Entities', parent=None, p0=Point(self.cont_dx, self.cont_dy), pb=Point(), sca=[self.cont_scale, self.cont_scale, self.cont_scale], rot=self.cont_rotate) self.layer_contents = Layers([]) self.shapes = Shapes([]) self.makeEntityShapes(self.entity_root) for layerContent in self.layer_contents: layerContent.overrideDefaults() self.layer_contents.sort(key=lambda x: x.nr) self.newNumber = len(self.shapes) def change_direction(self): """ this method is changing routing direction this needs to be linked to RI parameter which will came from layer name. The method needs to be called in def makeShapes method """ for shape in self.shapes: shape.reverse() def makeEntityShapes(self, parent, layerNr=-1): """ Instance is called prior to plotting the shapes. It creates all shape classes which are plotted into the canvas. @param parent: The parent of a shape is always an Entity. It may be the root or, if it is a Block, this is the Block. """ if parent.name == "Entities": entities = self.values_dxf.entities else: ent_nr = self.values_dxf.Get_Block_Nr(parent.name) entities = self.values_dxf.blocks.Entities[ent_nr] # Assigning the geometries in the variables geos & contours in cont ent_geos = entities.geo # Loop for the number of contours for cont in entities.cont: # Query if it is in the contour of an insert or of a block if ent_geos[cont.order[0][0]].Typ == "Insert": ent_geo = ent_geos[cont.order[0][0]] # Assign the base point for the block new_ent_nr = self.values_dxf.Get_Block_Nr(ent_geo.BlockName) new_entities = self.values_dxf.blocks.Entities[new_ent_nr] pb = new_entities.basep # Scaling, etc. assign the block p0 = ent_geos[cont.order[0][0]].Point sca = ent_geos[cont.order[0][0]].Scale rot = ent_geos[cont.order[0][0]].rot # Creating the new Entitie Contents for the insert newEntityContent = EntityContent(nr=0, name=ent_geo.BlockName, parent=parent, p0=p0, pb=pb, sca=sca, rot=rot) parent.append(newEntityContent) self.makeEntityShapes(newEntityContent, ent_geo.Layer_Nr) else: # Loop for the number of geometries tmp_shape = Shape(len(self.shapes), (True if cont.closed else False), parent) for ent_geo_nr in range(len(cont.order)): ent_geo = ent_geos[cont.order[ent_geo_nr][0]] if cont.order[ent_geo_nr][1]: ent_geo.geo.reverse() for geo in ent_geo.geo: geo = copy(geo) geo.reverse() self.append_geo_to_shape(tmp_shape, geo) ent_geo.geo.reverse() else: for geo in ent_geo.geo: self.append_geo_to_shape(tmp_shape, copy(geo)) if len(tmp_shape.geos) > 0: # All shapes have to be CW direction. tmp_shape.AnalyseAndOptimize() self.shapes.append(tmp_shape) if g.config.vars.Import_Parameters[ 'insert_at_block_layer'] and layerNr != -1: self.addtoLayerContents(tmp_shape, layerNr) else: self.addtoLayerContents(tmp_shape, ent_geo.Layer_Nr) parent.append(tmp_shape) def append_geo_to_shape(self, shape, geo): if -1e-5 <= geo.length < 1e-5: # TODO adjust import for this return shape.append(geo) if isinstance(geo, HoleGeo): shape.type = 'Hole' shape.closed = True # TODO adjust import for holes? if g.config.machine_type == 'drag_knife': shape.disabled = True shape.allowedToChange = False def addtoLayerContents(self, shape, lay_nr): # Check if the layer already exists and add shape if it is. for LayCon in self.layer_contents: if LayCon.nr == lay_nr: LayCon.shapes.append(shape) shape.parentLayer = LayCon return # If the Layer does not exist create a new one. LayerName = self.values_dxf.layers[lay_nr].name self.layer_contents.append(LayerContent(lay_nr, LayerName, [shape])) shape.parentLayer = self.layer_contents[-1] def exportShapes(self, status=False, saveas=None): """ This function is called by the menu "Export/Export Shapes". It may open a Save Dialog if used without LinuxCNC integration. Otherwise it's possible to select multiple postprocessor files, which are located in the folder. """ logger.debug('Export the enabled shapes' ) # save debug line into the logger file logger.debug("Sorted layers:") # save debug line into the logger file for i, layer in enumerate(self.layer_contents.non_break_layer_iter()): logger.debug( "LayerContents[%i] = %s" % (i, layer) ) #save layers from class layer_contents into the logger file ##fix for bug B01486 for LayerContent in self.layer_contents.non_break_layer_iter(): for number in range(0, len(LayerContent.shapes)): LayerContent.exp_order_complete.append(number) ##fix fir bug B01486 if not g.config.vars.General['write_to_stdout']: save_filename = os.path.splitext(self.dxf_filename) save_filename = save_filename[0] + ".nc" print(save_filename) self.my_post_processor.getPostProVars(0) """ Export will be performed according to LayerContents and their order is given in this variable too. """ self.my_post_processor.exportShapes(self.file_name, save_filename, self.layer_contents) if g.config.vars.General['write_to_stdout']: self.close() @staticmethod def log_file_path(): ''' Return a path for a main.py file location ''' if getattr(sys, 'frozen', False): script_dir = os.path.dirname(sys.executable) # from exe elif __file__: script_dir = os.path.dirname(__file__) # running live return script_dir @staticmethod def log_config(script_dir): ''' Setting up logger configuration ''' LOG_FORMAT = "%(levelname)s %(asctime)s - %(message)s" logging.basicConfig(filename=script_dir + "\\LogFile.log", level=logging.DEBUG, format=LOG_FORMAT, filemode='w') # filemode=w clean the log file logger = logging.getLogger() return logger
class MainWindow(QMainWindow): """Main Class""" def __init__(self, app): """ Initialization of the Main window. This is directly called after the Logger has been initialized. The Function loads the GUI, creates the used Classes and connects the actions to the GUI. """ QMainWindow.__init__(self) self.app = app self.ui = Ui_MainWindow() self.ui.setupUi(self) self.canvas = self.ui.canvas if g.config.mode3d: self.canvas_scene = self.canvas else: self.canvas_scene = None self.TreeHandler = TreeHandler(self.ui) self.MyPostProcessor = MyPostProcessor() self.d2g = Project(self) self.createActions() self.connectToolbarToConfig() self.filename = "" self.valuesDXF = None self.shapes = Shapes([]) self.entityRoot = None self.layerContents = Layers([]) self.newNumber = 1 self.cont_dx = 0.0 self.cont_dy = 0.0 self.cont_rotate = 0.0 self.cont_scale = 1.0 # self.readSettings() def tr(self, string_to_translate): """ Translate a string using the QCoreApplication translation framework @param: string_to_translate: a unicode string @return: the translated unicode string if it was possible to translate """ return text_type( QtCore.QCoreApplication.translate('MainWindow', string_to_translate)) def createActions(self): """ Create the actions of the main toolbar. @purpose: Links the callbacks to the actions in the menu """ # File self.ui.actionOpen.triggered.connect(self.open) self.ui.actionReload.triggered.connect(self.reload) self.ui.actionSaveProjectAs.triggered.connect(self.saveProject) self.ui.actionClose.triggered.connect(self.close) # Export self.ui.actionOptimizePaths.triggered.connect(self.optimizeTSP) self.ui.actionExportShapes.triggered.connect(self.exportShapes) self.ui.actionOptimizeAndExportShapes.triggered.connect( self.optimizeAndExportShapes) # View self.ui.actionShowPathDirections.triggered.connect( self.setShowPathDirections) self.ui.actionShowDisabledPaths.triggered.connect( self.setShowDisabledPaths) self.ui.actionLiveUpdateExportRoute.triggered.connect( self.liveUpdateExportRoute) self.ui.actionDeleteG0Paths.triggered.connect(self.deleteG0Paths) self.ui.actionAutoscale.triggered.connect(self.canvas.autoscale) if g.config.mode3d: self.ui.actionTopView.triggered.connect(self.canvas.topView) self.ui.actionIsometricView.triggered.connect( self.canvas.isometricView) # Options self.ui.actionTolerances.triggered.connect(self.setTolerances) self.ui.actionRotateAll.triggered.connect(self.rotateAll) self.ui.actionScaleAll.triggered.connect(self.scaleAll) self.ui.actionMoveWorkpieceZero.triggered.connect( self.moveWorkpieceZero) self.ui.actionSplitLineSegments.triggered.connect( self.d2g.small_reload) self.ui.actionAutomaticCutterCompensation.triggered.connect( self.d2g.small_reload) self.ui.actionMilling.triggered.connect(self.setMachineTypeToMilling) self.ui.actionDragKnife.triggered.connect( self.setMachineTypeToDragKnife) self.ui.actionLathe.triggered.connect(self.setMachineTypeToLathe) self.ui.actionLaser_Cutter.triggered.connect( self.setMachineTypeToLaserCutter) # Help self.ui.actionAbout.triggered.connect(self.about) def connectToolbarToConfig(self, project=False): # View if not project: self.ui.actionShowDisabledPaths.setChecked( g.config.vars.General['show_disabled_paths']) self.ui.actionLiveUpdateExportRoute.setChecked( g.config.vars.General['live_update_export_route']) # Options self.ui.actionSplitLineSegments.setChecked( g.config.vars.General['split_line_segments']) self.ui.actionAutomaticCutterCompensation.setChecked( g.config.vars.General['automatic_cutter_compensation']) self.updateMachineType() def keyPressEvent(self, event): """ Rewritten KeyPressEvent to get other behavior while Shift is pressed. @purpose: Changes to ScrollHandDrag while Control pressed @param event: Event Parameters passed to function """ if event.isAutoRepeat(): return if event.key() == QtCore.Qt.Key_Control: self.canvas.isMultiSelect = True elif event.key() == QtCore.Qt.Key_Shift: if g.config.mode3d: self.canvas.isPanning = True self.canvas.setCursor(QtCore.Qt.OpenHandCursor) else: self.canvas.setDragMode(QGraphicsView.ScrollHandDrag) elif event.key() == QtCore.Qt.Key_Alt: if g.config.mode3d: self.canvas.isRotating = True self.canvas.setCursor(QtCore.Qt.PointingHandCursor) def keyReleaseEvent(self, event): """ Rewritten KeyReleaseEvent to get other behavior while Shift is pressed. @purpose: Changes to RubberBandDrag while Control released @param event: Event Parameters passed to function """ if event.key() == QtCore.Qt.Key_Control: self.canvas.isMultiSelect = False elif event.key() == QtCore.Qt.Key_Shift: if g.config.mode3d: self.canvas.isPanning = False self.canvas.unsetCursor() else: self.canvas.setDragMode(QGraphicsView.NoDrag) elif event.key() == QtCore.Qt.Key_Alt: if g.config.mode3d: self.canvas.isRotating = False if -5 < self.canvas.rotX < 5 and\ -5 < self.canvas.rotY < 5 and\ -5 < self.canvas.rotZ < 5: self.canvas.rotX = 0 self.canvas.rotY = 0 self.canvas.rotZ = 0 self.canvas.update() self.canvas.unsetCursor() def enableToolbarButtons(self, status=True): # File self.ui.actionReload.setEnabled(status) self.ui.actionSaveProjectAs.setEnabled(status) # Export self.ui.actionOptimizePaths.setEnabled(status) self.ui.actionExportShapes.setEnabled(status) self.ui.actionOptimizeAndExportShapes.setEnabled(status) # View self.ui.actionShowPathDirections.setEnabled(status) self.ui.actionShowDisabledPaths.setEnabled(status) self.ui.actionLiveUpdateExportRoute.setEnabled(status) self.ui.actionAutoscale.setEnabled(status) if g.config.mode3d: self.ui.actionTopView.setEnabled(status) self.ui.actionIsometricView.setEnabled(status) # Options self.ui.actionTolerances.setEnabled(status) self.ui.actionRotateAll.setEnabled(status) self.ui.actionScaleAll.setEnabled(status) self.ui.actionMoveWorkpieceZero.setEnabled(status) def deleteG0Paths(self): """ Deletes the optimisation paths from the scene. """ self.setCursor(QtCore.Qt.WaitCursor) self.app.processEvents() self.canvas_scene.delete_opt_paths() self.ui.actionDeleteG0Paths.setEnabled(False) self.canvas_scene.update() self.unsetCursor() def exportShapes(self, status=False, saveas=None): """ This function is called by the menu "Export/Export Shapes". It may open a Save Dialog if used without LinuxCNC integration. Otherwise it's possible to select multiple postprocessor files, which are located in the folder. """ self.setCursor(QtCore.Qt.WaitCursor) self.app.processEvents() logger.debug(self.tr('Export the enabled shapes')) # Get the export order from the QTreeView self.TreeHandler.updateExportOrder() self.updateExportRoute() logger.debug(self.tr("Sorted layers:")) for i, layer in enumerate(self.layerContents.non_break_layer_iter()): logger.debug("LayerContents[%i] = %s" % (i, layer)) if not g.config.vars.General['write_to_stdout']: # Get the name of the File to export if not saveas: MyFormats = "" for i in range(len(self.MyPostProcessor.output_format)): name = "%s " % (self.MyPostProcessor.output_text[i]) format_ = "(*%s);;" % ( self.MyPostProcessor.output_format[i]) MyFormats = MyFormats + name + format_ filename = self.showSaveDialog(self.tr('Export to file'), MyFormats) save_filename = file_str(filename[0]) else: filename = [None, None] save_filename = saveas # If Cancel was pressed if not save_filename: self.unsetCursor() return (beg, ende) = os.path.split(save_filename) (fileBaseName, fileExtension) = os.path.splitext(ende) pp_file_nr = 0 for i in range(len(self.MyPostProcessor.output_format)): name = "%s " % (self.MyPostProcessor.output_text[i]) format_ = "(*%s)" % (self.MyPostProcessor.output_format[i]) MyFormats = name + format_ if filename[1] == MyFormats: pp_file_nr = i if fileExtension != self.MyPostProcessor.output_format[pp_file_nr]: if not QtCore.QFile.exists(save_filename): save_filename += self.MyPostProcessor.output_format[ pp_file_nr] self.MyPostProcessor.getPostProVars(pp_file_nr) else: save_filename = "" self.MyPostProcessor.getPostProVars(0) """ Export will be performed according to LayerContents and their order is given in this variable too. """ self.MyPostProcessor.exportShapes(self.filename, save_filename, self.layerContents) self.unsetCursor() if g.config.vars.General['write_to_stdout']: self.close() def optimizeAndExportShapes(self): """ Optimize the tool path, then export the shapes """ self.optimizeTSP() self.exportShapes() def updateExportRoute(self): """ Update the drawing of the export route """ self.canvas_scene.delete_opt_paths() self.canvas_scene.addexproutest() for LayerContent in self.layerContents.non_break_layer_iter(): if len(LayerContent.exp_order) > 0: self.canvas_scene.addexproute(LayerContent.exp_order, LayerContent.nr) if len(self.canvas_scene.routearrows) > 0: self.ui.actionDeleteG0Paths.setEnabled(True) self.canvas_scene.addexprouteen() self.canvas_scene.update() def optimizeTSP(self): """ Method is called to optimize the order of the shapes. This is performed by solving the TSP Problem. """ self.setCursor(QtCore.Qt.WaitCursor) self.app.processEvents() logger.debug(self.tr('Optimize order of enabled shapes per layer')) self.canvas_scene.delete_opt_paths() # Get the export order from the QTreeView logger.debug(self.tr('Updating order according to TreeView')) self.TreeHandler.updateExportOrder() self.canvas_scene.addexproutest() for LayerContent in self.layerContents.non_break_layer_iter(): # Initial values for the Lists to export. shapes_to_write = [] shapes_fixed_order = [] shapes_st_en_points = [] # Check all shapes of Layer which shall be exported and create List for it. logger.debug( self.tr("Nr. of Shapes %s; Nr. of Shapes in Route %s") % (len(LayerContent.shapes), len(LayerContent.exp_order))) logger.debug( self.tr("Export Order for start: %s") % LayerContent.exp_order) for shape_nr in range(len(LayerContent.exp_order)): if not self.shapes[ LayerContent.exp_order[shape_nr]].send_to_TSP: shapes_fixed_order.append(shape_nr) shapes_to_write.append(shape_nr) shapes_st_en_points.append(self.shapes[ LayerContent.exp_order[shape_nr]].get_start_end_points()) # Perform Export only if the Number of shapes to export is bigger than 0 if len(shapes_to_write) > 0: # Errechnen der Iterationen # Calculate the iterations iter_ = min(g.config.vars.Route_Optimisation['max_iterations'], len(shapes_to_write) * 50) # Adding the Start and End Points to the List. x_st = g.config.vars.Plane_Coordinates['axis1_start_end'] y_st = g.config.vars.Plane_Coordinates['axis2_start_end'] start = Point(x_st, y_st) ende = Point(x_st, y_st) shapes_st_en_points.append([start, ende]) TSPs = TspOptimization(shapes_st_en_points, shapes_fixed_order) logger.info( self.tr("TSP start values initialised for Layer %s") % LayerContent.name) logger.debug(self.tr("Shapes to write: %s") % shapes_to_write) logger.debug(self.tr("Fixed order: %s") % shapes_fixed_order) for it_nr in range(iter_): # Only show each 50th step. if it_nr % 50 == 0: TSPs.calc_next_iteration() new_exp_order = [ LayerContent.exp_order[nr] for nr in TSPs.opt_route[1:] ] logger.debug(self.tr("TSP done with result: %s") % TSPs) LayerContent.exp_order = new_exp_order self.canvas_scene.addexproute(LayerContent.exp_order, LayerContent.nr) logger.debug( self.tr("New Export Order after TSP: %s") % new_exp_order) self.app.processEvents() else: LayerContent.exp_order = [] if len(self.canvas_scene.routearrows) > 0: self.ui.actionDeleteG0Paths.setEnabled(True) self.canvas_scene.addexprouteen() # Update order in the treeView, according to path calculation done by the TSP self.TreeHandler.updateTreeViewOrder() self.canvas_scene.update() self.unsetCursor() def automaticCutterCompensation(self): if self.ui.actionAutomaticCutterCompensation.isEnabled() and\ self.ui.actionAutomaticCutterCompensation.isChecked(): for layerContent in self.layerContents.non_break_layer_iter(): if layerContent.automaticCutterCompensationEnabled(): outside_compensation = True shapes_left = layerContent.shapes while len(shapes_left) > 0: shapes_left = [ shape for shape in shapes_left if not self.ifNotContainedChangeCutCor( shape, shapes_left, outside_compensation) ] outside_compensation = not outside_compensation self.canvas_scene.update() def ifNotContainedChangeCutCor(self, shape, shapes_left, outside_compensation): for otherShape in shapes_left: if shape != otherShape: if shape != otherShape and\ otherShape.topLeft.x < shape.topLeft.x and shape.bottomRight.x < otherShape.bottomRight.x and\ otherShape.bottomRight.y < shape.bottomRight.y and shape.topLeft.y < otherShape.topLeft.y: return False if outside_compensation == shape.cw: shape.cut_cor = 41 else: shape.cut_cor = 42 self.canvas_scene.repaint_shape(shape) return True def showSaveDialog(self, title, MyFormats): """ This function is called by the menu "Export/Export Shapes" of the main toolbar. It creates the selection dialog for the exporter @return: Returns the filename of the selected file. """ (beg, ende) = os.path.split(self.filename) (fileBaseName, fileExtension) = os.path.splitext(ende) default_name = os.path.join(g.config.vars.Paths['output_dir'], fileBaseName) selected_filter = self.MyPostProcessor.output_format[0] filename = getSaveFileName(self, title, default_name, MyFormats, selected_filter) logger.info(self.tr("File: %s selected") % filename[0]) return filename def about(self): """ This function is called by the menu "Help/About" of the main toolbar and creates the About Window """ message = self.tr("<html>" "<h2><center>You are using</center></h2>" "<body bgcolor="\ "<center><img src=':images/dxf2gcode_logo.png' border='1' color='white'></center></body>" "<h2>Version:</h2>" "<body>%s: %s<br>" "Last change: %s<br>" "Changed by: %s<br></body>" "<h2>Where to get help:</h2>" "For more information and updates, " "please visit " "<a href='http://sourceforge.net/projects/dxf2gcode/'>http://sourceforge.net/projects/dxf2gcode/</a><br>" "For any questions on how to use dxf2gcode please use the " "<a href='https://groups.google.com/forum/?fromgroups#!forum/dxf2gcode-users'>mailing list</a><br>" "To log bugs, or request features please use the " "<a href='http://sourceforge.net/projects/dxf2gcode/tickets/'>issue tracking system</a><br>" "<h2>License and copyright:</h2>" "<body>This program is written in Python and is published under the " "<a href='http://www.gnu.org/licenses/'>GNU GPLv3 license.</a><br>" "</body></html>") % (c.VERSION, c.REVISION, c.DATE, c.AUTHOR) AboutDialog(title=self.tr("About DXF2GCODE"), message=message) def setShowPathDirections(self): """ This function is called by the menu "Show all path directions" of the main and forwards the call to Canvas.setShow_path_direction() """ flag = self.ui.actionShowPathDirections.isChecked() self.canvas.setShowPathDirections(flag) self.canvas_scene.update() def setShowDisabledPaths(self): """ This function is called by the menu "Show disabled paths" of the main and forwards the call to Canvas.setShow_disabled_paths() """ flag = self.ui.actionShowDisabledPaths.isChecked() self.canvas_scene.setShowDisabledPaths(flag) self.canvas_scene.update() def liveUpdateExportRoute(self): """ This function is called by the menu "Live update tool path" of the main and forwards the call to TreeHandler.setUpdateExportRoute() """ flag = self.ui.actionLiveUpdateExportRoute.isChecked() self.TreeHandler.setLiveUpdateExportRoute(flag) def setTolerances(self): title = self.tr('Contour tolerances') units = "in" if g.config.metric == 0 else "mm" label = [ self.tr("Tolerance for common points [%s]:") % units, self.tr("Tolerance for curve fitting [%s]:") % units ] value = [g.config.point_tolerance, g.config.fitting_tolerance] logger.debug(self.tr("set Tolerances")) SetTolDialog = PopUpDialog(title, label, value) if SetTolDialog.result is None: return g.config.point_tolerance = float(SetTolDialog.result[0]) g.config.fitting_tolerance = float(SetTolDialog.result[1]) self.d2g.reload() # set tolerances requires a complete reload def scaleAll(self): title = self.tr('Scale Contour') label = [self.tr("Scale Contour by factor:")] value = [self.cont_scale] ScaEntDialog = PopUpDialog(title, label, value) if ScaEntDialog.result is None: return self.cont_scale = float(ScaEntDialog.result[0]) self.entityRoot.sca = self.cont_scale self.d2g.small_reload() def rotateAll(self): title = self.tr('Rotate Contour') label = [ self.tr("Rotate Contour by deg:") ] # TODO should we support radians for drawing unit non metric? value = [degrees(self.cont_rotate)] RotEntDialog = PopUpDialog(title, label, value) if RotEntDialog.result is None: return self.cont_rotate = radians(float(RotEntDialog.result[0])) self.entityRoot.rot = self.cont_rotate self.d2g.small_reload() def moveWorkpieceZero(self): """ This function is called when the Option=>Move WP Zero Menu is clicked. """ title = self.tr('Workpiece zero offset') units = "[in]" if g.config.metric == 0 else "[mm]" label = [ self.tr("Offset %s axis %s:") % (g.config.vars.Axis_letters['ax1_letter'], units), self.tr("Offset %s axis %s:") % (g.config.vars.Axis_letters['ax2_letter'], units) ] value = [self.cont_dx, self.cont_dy] MoveWpzDialog = PopUpDialog(title, label, value, True) if MoveWpzDialog.result is None: return if MoveWpzDialog.result == 'Auto': minx = sys.float_info.max miny = sys.float_info.max for shape in self.shapes: if not shape.isDisabled(): minx = min(minx, shape.topLeft.x) miny = min(miny, shape.bottomRight.y) self.cont_dx = self.entityRoot.p0.x - minx self.cont_dy = self.entityRoot.p0.y - miny else: self.cont_dx = float(MoveWpzDialog.result[0]) self.cont_dy = float(MoveWpzDialog.result[1]) self.entityRoot.p0.x = self.cont_dx self.entityRoot.p0.y = self.cont_dy self.d2g.small_reload() def setMachineTypeToMilling(self): g.config.machine_type = 'milling' self.updateMachineType() self.d2g.small_reload() def setMachineTypeToDragKnife(self): g.config.machine_type = 'drag_knife' self.updateMachineType() self.d2g.small_reload() def setMachineTypeToLathe(self): g.config.machine_type = 'lathe' self.updateMachineType() self.d2g.small_reload() def setMachineTypeToLaserCutter(self): g.config.machine_type = 'laser_cutter' self.updateMachineType() self.d2g.small_reload() def updateMachineType(self): if g.config.machine_type == 'milling': self.ui.actionAutomaticCutterCompensation.setEnabled(True) self.ui.actionMilling.setChecked(True) self.ui.actionDragKnife.setChecked(False) self.ui.actionLathe.setChecked(False) self.ui.actionLaser_Cutter.setChecked(False) self.ui.label_9.setText(self.tr("Z Infeed depth")) self.ui.label_15.setText(self.tr("Not Available")) self.ui.label_16.setText(self.tr("Not Available")) elif g.config.machine_type == 'lathe': self.ui.actionAutomaticCutterCompensation.setEnabled(False) self.ui.actionMilling.setChecked(False) self.ui.actionDragKnife.setChecked(False) self.ui.actionLathe.setChecked(True) self.ui.actionLaser_Cutter.setChecked(False) self.ui.label_9.setText(self.tr("No Z-Axis for lathe")) self.ui.label_15.setText(self.tr("Not Available")) self.ui.label_16.setText(self.tr("Not Available")) elif g.config.machine_type == "drag_knife": self.ui.actionAutomaticCutterCompensation.setEnabled(False) self.ui.actionMilling.setChecked(False) self.ui.actionDragKnife.setChecked(True) self.ui.actionLathe.setChecked(False) self.ui.actionLaser_Cutter.setChecked(False) self.ui.label_9.setText(self.tr("Z Drag depth")) self.ui.label_15.setText(self.tr("Not Available")) self.ui.label_16.setText(self.tr("Not Available")) if g.config.machine_type == 'laser_cutter': self.ui.actionAutomaticCutterCompensation.setEnabled(True) self.ui.actionMilling.setChecked(False) self.ui.actionDragKnife.setChecked(False) self.ui.actionLathe.setChecked(False) self.ui.actionLaser_Cutter.setChecked(True) self.ui.label_15.setText(self.tr("Laser Power")) self.ui.label_16.setText(self.tr("Laser Pulses Per mm")) self.ui.label_10.setText(self.tr("Not Available")) self.ui.label_9.setText(self.tr("Not Available")) self.ui.label_8.setText(self.tr("Not Available")) self.ui.label_6.setText(self.tr("Not Available")) self.ui.label_5.setText(self.tr("Not Available")) self.ui.label_14.setText(self.tr("Not Available")) def open(self): """ This function is called by the menu "File/Load File" of the main toolbar. It creates the file selection dialog and calls the load function to load the selected file. """ self.OpenFileDialog(self.tr("Open file")) # If there is something to load then call the load function callback if self.filename: self.cont_dx = 0.0 self.cont_dy = 0.0 self.cont_rotate = 0.0 self.cont_scale = 1.0 self.load() def OpenFileDialog(self, title): self.filename, _ = getOpenFileName( self, title, g.config.vars.Paths['import_dir'], self.tr("All supported files (*.dxf *.ps *.pdf *%s);;" "DXF files (*.dxf);;" "PS files (*.ps);;" "PDF files (*.pdf);;" "Project files (*%s);;" "All types (*.*)") % (c.PROJECT_EXTENSION, c.PROJECT_EXTENSION)) # If there is something to load then call the load function callback if self.filename: self.filename = file_str(self.filename) logger.info(self.tr("File: %s selected") % self.filename) def load(self, plot=True): """ Loads the file given by self.filename. Also calls the command to make the plot. @param plot: if it should plot """ if not QtCore.QFile.exists(self.filename): logger.info(self.tr("Cannot locate file: %s") % self.filename) self.OpenFileDialog( self.tr("Manually open file: %s") % self.filename) if not self.filename: return False # cancelled self.setCursor(QtCore.Qt.WaitCursor) self.setWindowTitle("DXF2GCODE - [%s]" % self.filename) self.canvas.resetAll() self.app.processEvents() (name, ext) = os.path.splitext(self.filename) if ext.lower() == c.PROJECT_EXTENSION: self.loadProject(self.filename) return True # kill this load operation - we opened a new one if ext.lower() == ".ps" or ext.lower() == ".pdf": logger.info(self.tr("Sending Postscript/PDF to pstoedit")) # Create temporary file which will be read by the program self.filename = os.path.join(tempfile.gettempdir(), 'dxf2gcode_temp.dxf') pstoedit_cmd = g.config.vars.Filters['pstoedit_cmd'] pstoedit_opt = g.config.vars.Filters['pstoedit_opt'] ps_filename = os.path.normcase(self.filename) cmd = [('%s' % pstoedit_cmd) ] + pstoedit_opt + [('%s' % ps_filename), ('%s' % self.filename)] logger.debug(cmd) try: subprocess.call(cmd) except FileNotFoundError as e: logger.error(e.strerror) self.unsetCursor() QMessageBox.critical( self, "ERROR", self. tr("Please make sure you have installed pstoedit, and configured it in the config file." )) return True subprocess.check_output( ) # If the return code was non-zero it raises a subprocess.CalledProcessError. logger.info(self.tr('Loading file: %s') % self.filename) self.valuesDXF = ReadDXF(self.filename) # Output the information in the text window logger.info(self.tr('Loaded layers: %s') % len(self.valuesDXF.layers)) logger.info( self.tr('Loaded blocks: %s') % len(self.valuesDXF.blocks.Entities)) for i in range(len(self.valuesDXF.blocks.Entities)): layers = self.valuesDXF.blocks.Entities[i].get_used_layers() logger.info( self. tr('Block %i includes %i Geometries, reduced to %i Contours, used layers: %s' ) % (i, len(self.valuesDXF.blocks.Entities[i].geo), len(self.valuesDXF.blocks.Entities[i].cont), layers)) layers = self.valuesDXF.entities.get_used_layers() insert_nr = self.valuesDXF.entities.get_insert_nr() logger.info( self. tr('Loaded %i entity geometries; reduced to %i contours; used layers: %s; number of inserts %i' ) % (len(self.valuesDXF.entities.geo), len(self.valuesDXF.entities.cont), layers, insert_nr)) if g.config.metric == 0: logger.info(self.tr("Drawing units: inches")) distance = self.tr("[in]") speed = self.tr("[IPM]") else: logger.info(self.tr("Drawing units: millimeters")) distance = self.tr("[mm]") speed = self.tr("[mm/min]") self.ui.unitLabel_3.setText(distance) self.ui.unitLabel_4.setText(distance) self.ui.unitLabel_5.setText(distance) self.ui.unitLabel_6.setText(distance) self.ui.unitLabel_7.setText(distance) self.ui.unitLabel_8.setText(speed) self.ui.unitLabel_9.setText(speed) self.makeShapes() if plot: self.plot() return True def plot(self): # Populate the treeViews self.TreeHandler.buildEntitiesTree(self.entityRoot) self.TreeHandler.buildLayerTree(self.layerContents) # Paint the canvas if not g.config.mode3d: self.canvas_scene = MyGraphicsScene() self.canvas.setScene(self.canvas_scene) self.canvas_scene.plotAll(self.shapes) self.setShowPathDirections() self.setShowDisabledPaths() self.liveUpdateExportRoute() if not g.config.mode3d: self.canvas.show() self.canvas.setFocus() self.canvas.autoscale() # After all is plotted enable the Menu entities self.enableToolbarButtons() self.automaticCutterCompensation() self.unsetCursor() def reload(self): """ This function is called by the menu "File/Reload File" of the main toolbar. It reloads the previously loaded file (if any) """ if self.filename: logger.info(self.tr("Reloading file: %s") % self.filename) self.load() def makeShapes(self): self.entityRoot = EntityContent( nr=0, name='Entities', parent=None, p0=Point(self.cont_dx, self.cont_dy), pb=Point(), sca=[self.cont_scale, self.cont_scale, self.cont_scale], rot=self.cont_rotate) self.layerContents = Layers([]) self.shapes = Shapes([]) self.makeEntityShapes(self.entityRoot) for layerContent in self.layerContents: layerContent.overrideDefaults() self.layerContents.sort(key=lambda x: x.nr) self.newNumber = len(self.shapes) def makeEntityShapes(self, parent, layerNr=-1): """ Instance is called prior to plotting the shapes. It creates all shape classes which are plotted into the canvas. @param parent: The parent of a shape is always an Entity. It may be the root or, if it is a Block, this is the Block. """ if parent.name == "Entities": entities = self.valuesDXF.entities else: ent_nr = self.valuesDXF.Get_Block_Nr(parent.name) entities = self.valuesDXF.blocks.Entities[ent_nr] # Assigning the geometries in the variables geos & contours in cont ent_geos = entities.geo # Loop for the number of contours for cont in entities.cont: # Query if it is in the contour of an insert or of a block if ent_geos[cont.order[0][0]].Typ == "Insert": ent_geo = ent_geos[cont.order[0][0]] # Assign the base point for the block new_ent_nr = self.valuesDXF.Get_Block_Nr(ent_geo.BlockName) new_entities = self.valuesDXF.blocks.Entities[new_ent_nr] pb = new_entities.basep # Scaling, etc. assign the block p0 = ent_geos[cont.order[0][0]].Point sca = ent_geos[cont.order[0][0]].Scale rot = ent_geos[cont.order[0][0]].rot # Creating the new Entitie Contents for the insert newEntityContent = EntityContent(nr=0, name=ent_geo.BlockName, parent=parent, p0=p0, pb=pb, sca=sca, rot=rot) parent.append(newEntityContent) self.makeEntityShapes(newEntityContent, ent_geo.Layer_Nr) else: # Loop for the number of geometries tmp_shape = Shape(len(self.shapes), cont.closed, parent) for ent_geo_nr in range(len(cont.order)): ent_geo = ent_geos[cont.order[ent_geo_nr][0]] if cont.order[ent_geo_nr][1]: ent_geo.geo.reverse() for geo in ent_geo.geo: geo = copy(geo) geo.reverse() self.append_geo_to_shape(tmp_shape, geo) ent_geo.geo.reverse() else: for geo in ent_geo.geo: self.append_geo_to_shape(tmp_shape, copy(geo)) if len(tmp_shape.geos) > 0: # All shapes have to be CW direction. tmp_shape.AnalyseAndOptimize() self.shapes.append(tmp_shape) if g.config.vars.Import_Parameters[ 'insert_at_block_layer'] and layerNr != -1: self.addtoLayerContents(tmp_shape, layerNr) else: self.addtoLayerContents(tmp_shape, ent_geo.Layer_Nr) parent.append(tmp_shape) if not g.config.mode3d: # Connect the shapeSelectionChanged and enableDisableShape signals to our treeView, # so that selections of the shapes are reflected on the treeView tmp_shape.setSelectionChangedCallback( self.TreeHandler.updateShapeSelection) tmp_shape.setEnableDisableCallback( self.TreeHandler.updateShapeEnabling) def append_geo_to_shape(self, shape, geo): if -1e-5 <= geo.length < 1e-5: # TODO adjust import for this return if self.ui.actionSplitLineSegments.isChecked(): if isinstance(geo, LineGeo): diff = (geo.Pe - geo.Ps) / 2.0 geo_b = deepcopy(geo) geo_a = deepcopy(geo) geo_b.Pe -= diff geo_a.Ps += diff shape.append(geo_b) shape.append(geo_a) else: shape.append(geo) else: shape.append(geo) if isinstance(geo, HoleGeo): shape.type = 'Hole' shape.closed = 1 # TODO adjust import for holes? if g.config.machine_type == 'drag_knife': shape.disabled = True shape.allowedToChange = False def addtoLayerContents(self, shape, lay_nr): # Check if the layer already exists and add shape if it is. for LayCon in self.layerContents: if LayCon.nr == lay_nr: LayCon.shapes.append(shape) shape.parentLayer = LayCon return # If the Layer does not exist create a new one. LayerName = self.valuesDXF.layers[lay_nr].name self.layerContents.append(LayerContent(lay_nr, LayerName, [shape])) shape.parentLayer = self.layerContents[-1] def loadProject(self, filename): """ Load all variables from file """ # since Py3 has no longer execfile - we need to open it manually file_ = open(filename, 'r') str_ = file_.read() file_.close() self.d2g.load(str_) def saveProject(self): """ Save all variables to file """ prj_filename = self.showSaveDialog( self.tr('Save project to file'), "Project files (*%s)" % c.PROJECT_EXTENSION) save_prj_filename = file_str(prj_filename[0]) # If Cancel was pressed if not save_prj_filename: return (beg, ende) = os.path.split(save_prj_filename) (fileBaseName, fileExtension) = os.path.splitext(ende) if fileExtension != c.PROJECT_EXTENSION: if not QtCore.QFile.exists(save_prj_filename): save_prj_filename += c.PROJECT_EXTENSION pyCode = self.d2g.export() try: # File open and write f = open(save_prj_filename, "w") f.write(str_encode(pyCode)) f.close() logger.info(self.tr("Save project to FILE was successful")) except IOError: QMessageBox.warning(g.window, self.tr("Warning during Save Project As"), self.tr("Cannot Save the File")) def closeEvent(self, e): logger.debug(self.tr("Closing")) # self.writeSettings() e.accept() def readSettings(self): settings = QtCore.QSettings("dxf2gcode", "dxf2gcode") settings.beginGroup("MainWindow") self.resize(settings.value("size", QtCore.QSize(800, 600)).toSize()) self.move(settings.value("pos", QtCore.QPoint(200, 200)).toPoint()) settings.endGroup() def writeSettings(self): settings = QtCore.QSettings("dxf2gcode", "dxf2gcode") settings.beginGroup("MainWindow") settings.setValue("size", self.size()) settings.setValue("pos", self.pos()) settings.endGroup()
def load(self, content, compleet=True): match = re.match(Project.header.replace('+', '\+') % r'(\d+\.\d+)', content) if not match: raise Exception('Incorrect project file') version = float(match.groups()[0]) if version not in Project.supported_versions: raise VersionMismatchError(match.group(), Project.version) execute(self, content) if compleet: self.parent.filename = self.file g.config.point_tolerance = self.point_tol g.config.fitting_tolerance = self.fitting_tol self.parent.cont_scale = self.scale self.parent.cont_rotate = self.rot self.parent.cont_dx = self.wpzero_x self.parent.cont_dy = self.wpzero_y g.config.vars.General['split_line_segments'] = self.split_lines g.config.vars.General['automatic_cutter_compensation'] = self.aut_cut_com g.config.machine_type = self.machine_type self.parent.connectToolbarToConfig(True) if not self.parent.load(False): self.parent.unsetCursor() return name_layers = dict((layer.name, layer) for layer in self.parent.layerContents) # dict comprehensions are supported since Py2.7 # name_layers = {layer.name: layer for layer in self.parent.layerContents} layers = [] for parent_layer in self.layers: if parent_layer['name'] in name_layers: layer = name_layers[parent_layer['name']] layer.tool_nr = parent_layer['tool_nr'] layer.tool_diameter = parent_layer['diameter'] layer.speed = parent_layer['speed'] layer.start_radius = parent_layer['start_radius'] layer.axis3_retract = parent_layer['retract'] layer.axis3_safe_margin = parent_layer['safe_margin'] # hash_shapes = dict((self.get_hash(shape), shape) for shape in layer.shapes) # dict comprehensions are supported since Py2.7 # hash_shapes = {self.get_hash(shape): shape for shape in layer.shapes} hash_shapes = dict() for shape in layer.shapes: shape_hash = self.get_hash(shape, version) if shape_hash in hash_shapes: hash_shapes[shape_hash].insert(0, shape) else: hash_shapes[shape_hash] = [shape] shapes = [] for parent_shape in parent_layer['shapes']: if 'gcode' in parent_shape: shape = CustomGCode(parent_shape['name'], self.parent.newNumber, parent_shape['gcode'], layer) self.parent.newNumber += 1 shape.disabled = parent_shape['disabled'] shapes.append(shape) elif parent_shape['hash_'] in hash_shapes: shape_list = hash_shapes[parent_shape['hash_']] shape = shape_list.pop() if len(shape_list) == 0: del hash_shapes[parent_shape['hash_']] shape.cut_cor = parent_shape['cut_cor'] shape.send_to_TSP = parent_shape['send_to_TSP'] shape.disabled = parent_shape['disabled'] shape.axis3_start_mill_depth = parent_shape['start_mill_depth'] shape.axis3_slice_depth = parent_shape['slice_depth'] shape.axis3_mill_depth = parent_shape['mill_depth'] shape.f_g1_plane = parent_shape['f_g1_plane'] shape.f_g1_depth = parent_shape['f_g1_depth'] if parent_shape['cw'] != shape.cw: shape.reverse() shape.setNearestStPoint(Point(parent_shape['start_x'], parent_shape['start_y'])) shapes.append(shape) new_shapes = set(layer.shapes) - set(shapes); shapes.extend(new_shapes) # add "new" shapes to the end layer.shapes = Shapes(shapes) # overwrite original if len(new_shapes) > 0: logger.info(self.tr("New/Unrecognized shapes added for layer:%s; %s") % (layer.name, [shape.nr for shape in new_shapes])) layers.append(layer) layers.extend(set(self.parent.layerContents) - set(layers)) # add "new" layers to the end self.parent.layerContents = Layers(layers) # overwrite original self.parent.plot()
class MainWindow(QMainWindow): """Main Class""" #Define a QT signal that is emitted when the configuration changes. #Connect to this signal if you need to know when the configuration has changed. configuration_changed = QtCore.pyqtSignal() def __init__(self, app): """ Initialization of the Main window. This is directly called after the Logger has been initialized. The Function loads the GUI, creates the used Classes and connects the actions to the GUI. """ QMainWindow.__init__(self) #Build the configuration window self.config_window = ConfigWindow(g.config.makeConfigWindgets(), g.config.var_dict, g.config.var_dict.configspec, self) self.config_window.finished.connect(self.updateConfiguration) self.app = app self.ui = Ui_MainWindow() self.ui.setupUi(self) self.canvas = self.ui.canvas if g.config.mode3d: self.canvas_scene = self.canvas else: self.canvas_scene = None self.TreeHandler = TreeHandler(self.ui) self.configuration_changed.connect(self.TreeHandler.updateConfiguration) self.MyPostProcessor = MyPostProcessor() self.d2g = Project(self) self.createActions() self.connectToolbarToConfig() self.filename = "" self.valuesDXF = None self.shapes = Shapes([]) self.entityRoot = None self.layerContents = Layers([]) self.newNumber = 1 self.cont_dx = 0.0 self.cont_dy = 0.0 self.cont_rotate = 0.0 self.cont_scale = 1.0 # self.readSettings() def tr(self, string_to_translate): """ Translate a string using the QCoreApplication translation framework @param: string_to_translate: a unicode string @return: the translated unicode string if it was possible to translate """ return text_type(QtCore.QCoreApplication.translate('MainWindow', string_to_translate)) def createActions(self): """ Create the actions of the main toolbar. @purpose: Links the callbacks to the actions in the menu """ # File self.ui.actionOpen.triggered.connect(self.open) self.ui.actionReload.triggered.connect(self.reload) self.ui.actionSaveProjectAs.triggered.connect(self.saveProject) self.ui.actionClose.triggered.connect(self.close) # Export self.ui.actionOptimizePaths.triggered.connect(self.optimizeTSP) self.ui.actionExportShapes.triggered.connect(self.exportShapes) self.ui.actionOptimizeAndExportShapes.triggered.connect(self.optimizeAndExportShapes) # View self.ui.actionShowPathDirections.triggered.connect(self.setShowPathDirections) self.ui.actionShowDisabledPaths.toggled.connect(self.setShowDisabledPaths) #We need toggled (and not triggered), otherwise the signal is not emitted when state is changed programmatically self.ui.actionLiveUpdateExportRoute.toggled.connect(self.liveUpdateExportRoute) self.ui.actionDeleteG0Paths.triggered.connect(self.deleteG0Paths) self.ui.actionAutoscale.triggered.connect(self.canvas.autoscale) if g.config.mode3d: self.ui.actionTopView.triggered.connect(self.canvas.topView) self.ui.actionIsometricView.triggered.connect(self.canvas.isometricView) # Options self.ui.actionConfiguration.triggered.connect(self.config_window.show) self.ui.actionTolerances.triggered.connect(self.setTolerances) self.ui.actionRotateAll.triggered.connect(self.rotateAll) self.ui.actionScaleAll.triggered.connect(self.scaleAll) self.ui.actionMoveWorkpieceZero.triggered.connect(self.moveWorkpieceZero) self.ui.actionSplitLineSegments.toggled.connect(self.d2g.small_reload) self.ui.actionAutomaticCutterCompensation.toggled.connect(self.d2g.small_reload) self.ui.actionMilling.triggered.connect(self.setMachineTypeToMilling) self.ui.actionDragKnife.triggered.connect(self.setMachineTypeToDragKnife) self.ui.actionLathe.triggered.connect(self.setMachineTypeToLathe) # Help self.ui.actionAbout.triggered.connect(self.about) def connectToolbarToConfig(self, project=False): # View if not project: self.ui.actionShowDisabledPaths.blockSignals(True) #Don't emit any signal when changing state of the menu entries self.ui.actionShowDisabledPaths.setChecked(g.config.vars.General['show_disabled_paths']) self.ui.actionShowDisabledPaths.blockSignals(False) self.ui.actionLiveUpdateExportRoute.blockSignals(True) self.ui.actionLiveUpdateExportRoute.setChecked(g.config.vars.General['live_update_export_route']) self.ui.actionLiveUpdateExportRoute.blockSignals(False) # Options self.ui.actionSplitLineSegments.blockSignals(True) self.ui.actionSplitLineSegments.setChecked(g.config.vars.General['split_line_segments']) self.ui.actionSplitLineSegments.blockSignals(False) self.ui.actionAutomaticCutterCompensation.blockSignals(True) self.ui.actionAutomaticCutterCompensation.setChecked(g.config.vars.General['automatic_cutter_compensation']) self.ui.actionAutomaticCutterCompensation.blockSignals(False) self.updateMachineType() def keyPressEvent(self, event): """ Rewritten KeyPressEvent to get other behavior while Shift is pressed. @purpose: Changes to ScrollHandDrag while Control pressed @param event: Event Parameters passed to function """ if event.isAutoRepeat(): return if event.key() == QtCore.Qt.Key_Control: self.canvas.isMultiSelect = True elif event.key() == QtCore.Qt.Key_Shift: if g.config.mode3d: self.canvas.isPanning = True self.canvas.setCursor(QtCore.Qt.OpenHandCursor) else: self.canvas.setDragMode(QGraphicsView.ScrollHandDrag) elif event.key() == QtCore.Qt.Key_Alt: if g.config.mode3d: self.canvas.isRotating = True self.canvas.setCursor(QtCore.Qt.PointingHandCursor) def keyReleaseEvent(self, event): """ Rewritten KeyReleaseEvent to get other behavior while Shift is pressed. @purpose: Changes to RubberBandDrag while Control released @param event: Event Parameters passed to function """ if event.key() == QtCore.Qt.Key_Control: self.canvas.isMultiSelect = False elif event.key() == QtCore.Qt.Key_Shift: if g.config.mode3d: self.canvas.isPanning = False self.canvas.unsetCursor() else: self.canvas.setDragMode(QGraphicsView.NoDrag) elif event.key() == QtCore.Qt.Key_Alt: if g.config.mode3d: self.canvas.isRotating = False if -5 < self.canvas.rotX < 5 and\ -5 < self.canvas.rotY < 5 and\ -5 < self.canvas.rotZ < 5: self.canvas.rotX = 0 self.canvas.rotY = 0 self.canvas.rotZ = 0 self.canvas.update() self.canvas.unsetCursor() def enableToolbarButtons(self, status=True): # File self.ui.actionReload.setEnabled(status) self.ui.actionSaveProjectAs.setEnabled(status) # Export self.ui.actionOptimizePaths.setEnabled(status) self.ui.actionExportShapes.setEnabled(status) self.ui.actionOptimizeAndExportShapes.setEnabled(status) # View self.ui.actionShowPathDirections.setEnabled(status) self.ui.actionShowDisabledPaths.setEnabled(status) self.ui.actionLiveUpdateExportRoute.setEnabled(status) self.ui.actionAutoscale.setEnabled(status) if g.config.mode3d: self.ui.actionTopView.setEnabled(status) self.ui.actionIsometricView.setEnabled(status) # Options self.ui.actionTolerances.setEnabled(status) self.ui.actionRotateAll.setEnabled(status) self.ui.actionScaleAll.setEnabled(status) self.ui.actionMoveWorkpieceZero.setEnabled(status) def deleteG0Paths(self): """ Deletes the optimisation paths from the scene. """ self.setCursor(QtCore.Qt.WaitCursor) self.app.processEvents() self.canvas_scene.delete_opt_paths() self.ui.actionDeleteG0Paths.setEnabled(False) self.canvas_scene.update() self.unsetCursor() def exportShapes(self, status=False, saveas=None): """ This function is called by the menu "Export/Export Shapes". It may open a Save Dialog if used without LinuxCNC integration. Otherwise it's possible to select multiple postprocessor files, which are located in the folder. """ self.setCursor(QtCore.Qt.WaitCursor) self.app.processEvents() logger.debug(self.tr('Export the enabled shapes')) # Get the export order from the QTreeView self.TreeHandler.updateExportOrder() self.updateExportRoute() logger.debug(self.tr("Sorted layers:")) for i, layer in enumerate(self.layerContents.non_break_layer_iter()): logger.debug("LayerContents[%i] = %s" % (i, layer)) if not g.config.vars.General['write_to_stdout']: # Get the name of the File to export if not saveas: MyFormats = "" for i in range(len(self.MyPostProcessor.output_format)): name = "%s " % (self.MyPostProcessor.output_text[i]) format_ = "(*%s);;" % (self.MyPostProcessor.output_format[i]) MyFormats = MyFormats + name + format_ filename = self.showSaveDialog(self.tr('Export to file'), MyFormats) save_filename = file_str(filename[0]) else: filename = [None, None] save_filename = saveas # If Cancel was pressed if not save_filename: self.unsetCursor() return (beg, ende) = os.path.split(save_filename) (fileBaseName, fileExtension) = os.path.splitext(ende) pp_file_nr = 0 for i in range(len(self.MyPostProcessor.output_format)): name = "%s " % (self.MyPostProcessor.output_text[i]) format_ = "(*%s)" % (self.MyPostProcessor.output_format[i]) MyFormats = name + format_ if filename[1] == MyFormats: pp_file_nr = i if fileExtension != self.MyPostProcessor.output_format[pp_file_nr]: if not QtCore.QFile.exists(save_filename): save_filename += self.MyPostProcessor.output_format[pp_file_nr] self.MyPostProcessor.getPostProVars(pp_file_nr) else: save_filename = "" self.MyPostProcessor.getPostProVars(0) """ Export will be performed according to LayerContents and their order is given in this variable too. """ self.MyPostProcessor.exportShapes(self.filename, save_filename, self.layerContents) self.unsetCursor() if g.config.vars.General['write_to_stdout']: self.close() def optimizeAndExportShapes(self): """ Optimize the tool path, then export the shapes """ self.optimizeTSP() self.exportShapes() def updateExportRoute(self): """ Update the drawing of the export route """ self.canvas_scene.delete_opt_paths() self.canvas_scene.addexproutest() for LayerContent in self.layerContents.non_break_layer_iter(): if len(LayerContent.exp_order) > 0: self.canvas_scene.addexproute(LayerContent.exp_order, LayerContent.nr) if len(self.canvas_scene.routearrows) > 0: self.ui.actionDeleteG0Paths.setEnabled(True) self.canvas_scene.addexprouteen() self.canvas_scene.update() def optimizeTSP(self): """ Method is called to optimize the order of the shapes. This is performed by solving the TSP Problem. """ self.setCursor(QtCore.Qt.WaitCursor) self.app.processEvents() logger.debug(self.tr('Optimize order of enabled shapes per layer')) self.canvas_scene.delete_opt_paths() # Get the export order from the QTreeView logger.debug(self.tr('Updating order according to TreeView')) self.TreeHandler.updateExportOrder() self.canvas_scene.addexproutest() for LayerContent in self.layerContents.non_break_layer_iter(): # Initial values for the Lists to export. shapes_to_write = [] shapes_fixed_order = [] shapes_st_en_points = [] # Check all shapes of Layer which shall be exported and create List for it. logger.debug(self.tr("Nr. of Shapes %s; Nr. of Shapes in Route %s") % (len(LayerContent.shapes), len(LayerContent.exp_order))) logger.debug(self.tr("Export Order for start: %s") % LayerContent.exp_order) for shape_nr in range(len(LayerContent.exp_order)): if not self.shapes[LayerContent.exp_order[shape_nr]].send_to_TSP: shapes_fixed_order.append(shape_nr) shapes_to_write.append(shape_nr) shapes_st_en_points.append(self.shapes[LayerContent.exp_order[shape_nr]].get_start_end_points()) # Perform Export only if the Number of shapes to export is bigger than 0 if len(shapes_to_write) > 0: # Errechnen der Iterationen # Calculate the iterations iter_ = min(g.config.vars.Route_Optimisation['max_iterations'], len(shapes_to_write)*50) # Adding the Start and End Points to the List. x_st = g.config.vars.Plane_Coordinates['axis1_start_end'] y_st = g.config.vars.Plane_Coordinates['axis2_start_end'] start = Point(x_st, y_st) ende = Point(x_st, y_st) shapes_st_en_points.append([start, ende]) TSPs = TspOptimization(shapes_st_en_points, shapes_fixed_order) logger.info(self.tr("TSP start values initialised for Layer %s") % LayerContent.name) logger.debug(self.tr("Shapes to write: %s") % shapes_to_write) logger.debug(self.tr("Fixed order: %s") % shapes_fixed_order) for it_nr in range(iter_): # Only show each 50th step. if it_nr % 50 == 0: TSPs.calc_next_iteration() new_exp_order = [LayerContent.exp_order[nr] for nr in TSPs.opt_route[1:]] logger.debug(self.tr("TSP done with result: %s") % TSPs) LayerContent.exp_order = new_exp_order self.canvas_scene.addexproute(LayerContent.exp_order, LayerContent.nr) logger.debug(self.tr("New Export Order after TSP: %s") % new_exp_order) self.app.processEvents() else: LayerContent.exp_order = [] if len(self.canvas_scene.routearrows) > 0: self.ui.actionDeleteG0Paths.setEnabled(True) self.canvas_scene.addexprouteen() # Update order in the treeView, according to path calculation done by the TSP self.TreeHandler.updateTreeViewOrder() self.canvas_scene.update() self.unsetCursor() def automaticCutterCompensation(self): if self.ui.actionAutomaticCutterCompensation.isEnabled() and\ self.ui.actionAutomaticCutterCompensation.isChecked(): for layerContent in self.layerContents.non_break_layer_iter(): if layerContent.automaticCutterCompensationEnabled(): new_exp_order = [] outside_compensation = True shapes_left = layerContent.shapes while len(shapes_left) > 0: shapes_left = [shape for shape in shapes_left if not self.ifNotContainedChangeCutCor(shape, shapes_left, outside_compensation, new_exp_order)] outside_compensation = not outside_compensation layerContent.exp_order = list(reversed(new_exp_order)) self.TreeHandler.updateTreeViewOrder() self.canvas_scene.update() def ifNotContainedChangeCutCor(self, shape, shapes_left, outside_compensation, new_exp_order): if not isinstance(shape, CustomGCode): for outerShape in shapes_left: if self.isShapeContained(shape, outerShape): return False if outside_compensation == shape.cw: shape.cut_cor = 41 else: shape.cut_cor = 42 self.canvas_scene.repaint_shape(shape) new_exp_order.append(shape.nr) return True def isShapeContained(self, shape, outerShape): return shape != outerShape and not \ isinstance(outerShape, CustomGCode) and\ shape.BB.iscontained(outerShape.BB) def showSaveDialog(self, title, MyFormats): """ This function is called by the menu "Export/Export Shapes" of the main toolbar. It creates the selection dialog for the exporter @return: Returns the filename of the selected file. """ (beg, ende) = os.path.split(self.filename) (fileBaseName, fileExtension) = os.path.splitext(ende) default_name = os.path.join(g.config.vars.Paths['output_dir'], fileBaseName) selected_filter = self.MyPostProcessor.output_format[0] filename = getSaveFileName(self, title, default_name, MyFormats, selected_filter) logger.info(self.tr("File: %s selected") % filename[0]) logger.info("<a href='%s'>%s</a>" %(filename[0],filename[0])) return filename def about(self): """ This function is called by the menu "Help/About" of the main toolbar and creates the About Window """ message = self.tr("<html>" "<h2><center>You are using</center></h2>" "<body bgcolor="\ "<center><img src=':images/dxf2gcode_logo.png' border='1' color='white'></center></body>" "<h2>Version:</h2>" "<body>%s: %s<br>" "Last change: %s<br>" "Changed by: %s<br></body>" "<h2>Where to get help:</h2>" "For more information and updates, " "please visit " "<a href='http://sourceforge.net/projects/dxf2gcode/'>http://sourceforge.net/projects/dxf2gcode/</a><br>" "For any questions on how to use dxf2gcode please use the " "<a href='https://groups.google.com/forum/?fromgroups#!forum/dxf2gcode-users'>mailing list</a><br>" "To log bugs, or request features please use the " "<a href='http://sourceforge.net/projects/dxf2gcode/tickets/'>issue tracking system</a><br>" "<h2>License and copyright:</h2>" "<body>This program is written in Python and is published under the " "<a href='http://www.gnu.org/licenses/'>GNU GPLv3 license.</a><br>" "</body></html>") % (c.VERSION, c.REVISION, c.DATE, c.AUTHOR) AboutDialog(title=self.tr("About DXF2GCODE"), message=message) def setShowPathDirections(self): """ This function is called by the menu "Show all path directions" of the main and forwards the call to Canvas.setShow_path_direction() """ flag = self.ui.actionShowPathDirections.isChecked() self.canvas.setShowPathDirections(flag) self.canvas_scene.update() def setShowDisabledPaths(self): """ This function is called by the menu "Show disabled paths" of the main and forwards the call to Canvas.setShow_disabled_paths() """ flag = self.ui.actionShowDisabledPaths.isChecked() self.canvas_scene.setShowDisabledPaths(flag) self.canvas_scene.update() def liveUpdateExportRoute(self): """ This function is called by the menu "Live update tool path" of the main and forwards the call to TreeHandler.setUpdateExportRoute() """ flag = self.ui.actionLiveUpdateExportRoute.isChecked() self.TreeHandler.setLiveUpdateExportRoute(flag) def setTolerances(self): title = self.tr('Contour tolerances') units = "in" if g.config.metric == 0 else "mm" label = [self.tr("Tolerance for common points [%s]:") % units, self.tr("Tolerance for curve fitting [%s]:") % units] value = [g.config.point_tolerance, g.config.fitting_tolerance] logger.debug(self.tr("set Tolerances")) SetTolDialog = PopUpDialog(title, label, value) if SetTolDialog.result is None: return g.config.point_tolerance = float(SetTolDialog.result[0]) g.config.fitting_tolerance = float(SetTolDialog.result[1]) self.d2g.reload() # set tolerances requires a complete reload def scaleAll(self): title = self.tr('Scale Contour') label = [self.tr("Scale Contour by factor:")] value = [self.cont_scale] ScaEntDialog = PopUpDialog(title, label, value) if ScaEntDialog.result is None: return self.cont_scale = float(ScaEntDialog.result[0]) self.entityRoot.sca = self.cont_scale self.d2g.small_reload() def rotateAll(self): title = self.tr('Rotate Contour') label = [self.tr("Rotate Contour by deg:")] # TODO should we support radians for drawing unit non metric? value = [degrees(self.cont_rotate)] RotEntDialog = PopUpDialog(title, label, value) if RotEntDialog.result is None: return self.cont_rotate = radians(float(RotEntDialog.result[0])) self.entityRoot.rot = self.cont_rotate self.d2g.small_reload() def moveWorkpieceZero(self): """ This function is called when the Option=>Move WP Zero Menu is clicked. """ title = self.tr('Workpiece zero offset') units = "[in]" if g.config.metric == 0 else "[mm]" label = [self.tr("Offset %s axis %s:") % (g.config.vars.Axis_letters['ax1_letter'], units), self.tr("Offset %s axis %s:") % (g.config.vars.Axis_letters['ax2_letter'], units)] value = [self.cont_dx, self.cont_dy] MoveWpzDialog = PopUpDialog(title, label, value, True) if MoveWpzDialog.result is None: return if MoveWpzDialog.result == 'Auto': minx = sys.float_info.max miny = sys.float_info.max for shape in self.shapes: if not shape.isDisabled(): minx = min(minx, shape.BB.Ps.x) miny = min(miny, shape.BB.Ps.y) self.cont_dx = self.entityRoot.p0.x - minx self.cont_dy = self.entityRoot.p0.y - miny else: self.cont_dx = float(MoveWpzDialog.result[0]) self.cont_dy = float(MoveWpzDialog.result[1]) self.entityRoot.p0.x = self.cont_dx self.entityRoot.p0.y = self.cont_dy self.d2g.small_reload() def setMachineTypeToMilling(self): g.config.machine_type = 'milling' self.updateMachineType() self.d2g.small_reload() def setMachineTypeToDragKnife(self): g.config.machine_type = 'drag_knife' self.updateMachineType() self.d2g.small_reload() def setMachineTypeToLathe(self): g.config.machine_type = 'lathe' self.updateMachineType() self.d2g.small_reload() def updateMachineType(self): if g.config.machine_type == 'milling': self.ui.actionAutomaticCutterCompensation.setEnabled(True) self.ui.actionMilling.setChecked(True) self.ui.actionDragKnife.setChecked(False) self.ui.actionLathe.setChecked(False) self.ui.label_9.setText(self.tr("Z Infeed depth")) elif g.config.machine_type == 'lathe': self.ui.actionAutomaticCutterCompensation.setEnabled(False) self.ui.actionMilling.setChecked(False) self.ui.actionDragKnife.setChecked(False) self.ui.actionLathe.setChecked(True) self.ui.label_9.setText(self.tr("No Z-Axis for lathe")) elif g.config.machine_type == "drag_knife": self.ui.actionAutomaticCutterCompensation.setEnabled(False) self.ui.actionMilling.setChecked(False) self.ui.actionDragKnife.setChecked(True) self.ui.actionLathe.setChecked(False) self.ui.label_9.setText(self.tr("Z Drag depth")) def open(self): """ This function is called by the menu "File/Load File" of the main toolbar. It creates the file selection dialog and calls the load function to load the selected file. """ self.OpenFileDialog(self.tr("Open file")) # If there is something to load then call the load function callback if self.filename: self.cont_dx = 0.0 self.cont_dy = 0.0 self.cont_rotate = 0.0 self.cont_scale = 1.0 self.load() def OpenFileDialog(self, title): self.filename, _ = getOpenFileName(self, title, g.config.vars.Paths['import_dir'], self.tr("All supported files (*.dxf *.ps *.pdf *%s);;" "DXF files (*.dxf);;" "PS files (*.ps);;" "PDF files (*.pdf);;" "Project files (*%s);;" "All types (*.*)") % (c.PROJECT_EXTENSION, c.PROJECT_EXTENSION)) # If there is something to load then call the load function callback if self.filename: self.filename = file_str(self.filename) logger.info(self.tr("File: %s selected") % self.filename) def load(self, plot=True): """ Loads the file given by self.filename. Also calls the command to make the plot. @param plot: if it should plot """ if not QtCore.QFile.exists(self.filename): logger.info(self.tr("Cannot locate file: %s") % self.filename) self.OpenFileDialog(self.tr("Manually open file: %s") % self.filename) if not self.filename: return False # cancelled self.setCursor(QtCore.Qt.WaitCursor) self.setWindowTitle("DXF2GCODE - [%s]" % self.filename) self.canvas.resetAll() self.app.processEvents() (name, ext) = os.path.splitext(self.filename) if ext.lower() == c.PROJECT_EXTENSION: self.loadProject(self.filename) return True # kill this load operation - we opened a new one if ext.lower() == ".ps" or ext.lower() == ".pdf": logger.info(self.tr("Sending Postscript/PDF to pstoedit")) # Create temporary file which will be read by the program self.filename = os.path.join(tempfile.gettempdir(), 'dxf2gcode_temp.dxf') pstoedit_cmd = g.config.vars.Filters['pstoedit_cmd'] pstoedit_opt = g.config.vars.Filters['pstoedit_opt'] ps_filename = os.path.normcase(self.filename) cmd = [('%s' % pstoedit_cmd)] + pstoedit_opt + [('%s' % ps_filename), ('%s' % self.filename)] logger.debug(cmd) try: subprocess.call(cmd) except FileNotFoundError as e: logger.error(e.strerror) self.unsetCursor() QMessageBox.critical(self, "ERROR", self.tr("Please make sure you have installed pstoedit, and configured it in the config file.")) return True subprocess.check_output() # If the return code was non-zero it raises a subprocess.CalledProcessError. logger.info(self.tr('Loading file: %s') % self.filename) self.valuesDXF = ReadDXF(self.filename) # Output the information in the text window logger.info(self.tr('Loaded layers: %s') % len(self.valuesDXF.layers)) logger.info(self.tr('Loaded blocks: %s') % len(self.valuesDXF.blocks.Entities)) for i in range(len(self.valuesDXF.blocks.Entities)): layers = self.valuesDXF.blocks.Entities[i].get_used_layers() logger.info(self.tr('Block %i includes %i Geometries, reduced to %i Contours, used layers: %s') % (i, len(self.valuesDXF.blocks.Entities[i].geo), len(self.valuesDXF.blocks.Entities[i].cont), layers)) layers = self.valuesDXF.entities.get_used_layers() insert_nr = self.valuesDXF.entities.get_insert_nr() logger.info(self.tr('Loaded %i entity geometries; reduced to %i contours; used layers: %s; number of inserts %i') % (len(self.valuesDXF.entities.geo), len(self.valuesDXF.entities.cont), layers, insert_nr)) if g.config.metric == 0: logger.info(self.tr("Drawing units: inches")) distance = self.tr("[in]") speed = self.tr("[IPM]") else: logger.info(self.tr("Drawing units: millimeters")) distance = self.tr("[mm]") speed = self.tr("[mm/min]") self.ui.unitLabel_3.setText(distance) self.ui.unitLabel_4.setText(distance) self.ui.unitLabel_5.setText(distance) self.ui.unitLabel_6.setText(distance) self.ui.unitLabel_7.setText(distance) self.ui.unitLabel_8.setText(speed) self.ui.unitLabel_9.setText(speed) self.makeShapes() if plot: self.plot() return True def plot(self): # Populate the treeViews self.TreeHandler.buildEntitiesTree(self.entityRoot) self.TreeHandler.buildLayerTree(self.layerContents) # Paint the canvas if not g.config.mode3d: self.canvas_scene = MyGraphicsScene() self.canvas.setScene(self.canvas_scene) self.canvas_scene.plotAll(self.shapes) self.setShowPathDirections() self.setShowDisabledPaths() self.liveUpdateExportRoute() if not g.config.mode3d: self.canvas.show() self.canvas.setFocus() self.canvas.autoscale() # After all is plotted enable the Menu entities self.enableToolbarButtons() self.automaticCutterCompensation() self.unsetCursor() def reload(self): """ This function is called by the menu "File/Reload File" of the main toolbar. It reloads the previously loaded file (if any) """ if self.filename: logger.info(self.tr("Reloading file: %s") % self.filename) self.load() def makeShapes(self): self.entityRoot = EntityContent(nr=0, name='Entities', parent=None, p0=Point(self.cont_dx, self.cont_dy), pb=Point(), sca=[self.cont_scale, self.cont_scale, self.cont_scale], rot=self.cont_rotate) self.layerContents = Layers([]) self.shapes = Shapes([]) self.makeEntityShapes(self.entityRoot) for layerContent in self.layerContents: layerContent.overrideDefaults() self.layerContents.sort(key=lambda x: x.nr) self.newNumber = len(self.shapes) def makeEntityShapes(self, parent, layerNr=-1): """ Instance is called prior to plotting the shapes. It creates all shape classes which are plotted into the canvas. @param parent: The parent of a shape is always an Entity. It may be the root or, if it is a Block, this is the Block. """ if parent.name == "Entities": entities = self.valuesDXF.entities else: ent_nr = self.valuesDXF.Get_Block_Nr(parent.name) entities = self.valuesDXF.blocks.Entities[ent_nr] # Assigning the geometries in the variables geos & contours in cont ent_geos = entities.geo # Loop for the number of contours for cont in entities.cont: # Query if it is in the contour of an insert or of a block if ent_geos[cont.order[0][0]].Typ == "Insert": ent_geo = ent_geos[cont.order[0][0]] # Assign the base point for the block new_ent_nr = self.valuesDXF.Get_Block_Nr(ent_geo.BlockName) new_entities = self.valuesDXF.blocks.Entities[new_ent_nr] pb = new_entities.basep # Scaling, etc. assign the block p0 = ent_geos[cont.order[0][0]].Point sca = ent_geos[cont.order[0][0]].Scale rot = ent_geos[cont.order[0][0]].rot # Creating the new Entitie Contents for the insert newEntityContent = EntityContent(nr=0, name=ent_geo.BlockName, parent=parent, p0=p0, pb=pb, sca=sca, rot=rot) parent.append(newEntityContent) self.makeEntityShapes(newEntityContent, ent_geo.Layer_Nr) else: # Loop for the number of geometries tmp_shape = Shape(len(self.shapes), (True if cont.closed else False), parent) for ent_geo_nr in range(len(cont.order)): ent_geo = ent_geos[cont.order[ent_geo_nr][0]] if cont.order[ent_geo_nr][1]: ent_geo.geo.reverse() for geo in ent_geo.geo: geo = copy(geo) geo.reverse() self.append_geo_to_shape(tmp_shape, geo) ent_geo.geo.reverse() else: for geo in ent_geo.geo: self.append_geo_to_shape(tmp_shape, copy(geo)) if len(tmp_shape.geos) > 0: # All shapes have to be CW direction. tmp_shape.AnalyseAndOptimize() self.shapes.append(tmp_shape) if g.config.vars.Import_Parameters['insert_at_block_layer'] and layerNr != -1: self.addtoLayerContents(tmp_shape, layerNr) else: self.addtoLayerContents(tmp_shape, ent_geo.Layer_Nr) parent.append(tmp_shape) if not g.config.mode3d: # Connect the shapeSelectionChanged and enableDisableShape signals to our treeView, # so that selections of the shapes are reflected on the treeView tmp_shape.setSelectionChangedCallback(self.TreeHandler.updateShapeSelection) tmp_shape.setEnableDisableCallback(self.TreeHandler.updateShapeEnabling) def append_geo_to_shape(self, shape, geo): if -1e-5 <= geo.length < 1e-5: # TODO adjust import for this return if self.ui.actionSplitLineSegments.isChecked(): if isinstance(geo, LineGeo): diff = (geo.Pe - geo.Ps) / 2.0 geo_b = deepcopy(geo) geo_a = deepcopy(geo) geo_b.Pe -= diff geo_a.Ps += diff shape.append(geo_b) shape.append(geo_a) else: shape.append(geo) else: shape.append(geo) if isinstance(geo, HoleGeo): shape.type = 'Hole' shape.closed = True # TODO adjust import for holes? if g.config.machine_type == 'drag_knife': shape.disabled = True shape.allowedToChange = False def addtoLayerContents(self, shape, lay_nr): # Check if the layer already exists and add shape if it is. for LayCon in self.layerContents: if LayCon.nr == lay_nr: LayCon.shapes.append(shape) shape.parentLayer = LayCon return # If the Layer does not exist create a new one. LayerName = self.valuesDXF.layers[lay_nr].name self.layerContents.append(LayerContent(lay_nr, LayerName, [shape])) shape.parentLayer = self.layerContents[-1] def updateConfiguration(self, result): """ Some modification occured in the configuration window, we need to save these changes into the config file. Once done, the signal configuration_changed is emitted, so that anyone interested in this information can connect to this signal. """ if result == ConfigWindow.Applied or result == ConfigWindow.Accepted: g.config._save_varspace() #Write the configuration into the config file (config.cfg) g.config.update_config() #Rebuild the readonly configuration structure # Assign changes to the menus (if no change occured, nothing happens / otherwise QT emits a signal for the menu entry that has changed) self.ui.actionShowDisabledPaths.setChecked(g.config.vars.General['show_disabled_paths']) self.ui.actionLiveUpdateExportRoute.setChecked(g.config.vars.General['live_update_export_route']) self.ui.actionSplitLineSegments.setChecked(g.config.vars.General['split_line_segments']) self.ui.actionAutomaticCutterCompensation.setChecked(g.config.vars.General['automatic_cutter_compensation']) # Inform about the changes into the configuration self.configuration_changed.emit() def loadProject(self, filename): """ Load all variables from file """ # since Py3 has no longer execfile - we need to open it manually file_ = open(filename, 'r') str_ = file_.read() file_.close() self.d2g.load(str_) def saveProject(self): """ Save all variables to file """ prj_filename = self.showSaveDialog(self.tr('Save project to file'), "Project files (*%s)" % c.PROJECT_EXTENSION) save_prj_filename = file_str(prj_filename[0]) # If Cancel was pressed if not save_prj_filename: return (beg, ende) = os.path.split(save_prj_filename) (fileBaseName, fileExtension) = os.path.splitext(ende) if fileExtension != c.PROJECT_EXTENSION: if not QtCore.QFile.exists(save_prj_filename): save_prj_filename += c.PROJECT_EXTENSION pyCode = self.d2g.export() try: # File open and write f = open(save_prj_filename, "w") f.write(str_encode(pyCode)) f.close() logger.info(self.tr("Save project to FILE was successful")) except IOError: QMessageBox.warning(g.window, self.tr("Warning during Save Project As"), self.tr("Cannot Save the File")) def closeEvent(self, e): logger.debug(self.tr("Closing")) # self.writeSettings() e.accept() def readSettings(self): settings = QtCore.QSettings("dxf2gcode", "dxf2gcode") settings.beginGroup("MainWindow") self.resize(settings.value("size", QtCore.QSize(800, 600)).toSize()) self.move(settings.value("pos", QtCore.QPoint(200, 200)).toPoint()) settings.endGroup() def writeSettings(self): settings = QtCore.QSettings("dxf2gcode", "dxf2gcode") settings.beginGroup("MainWindow") settings.setValue("size", self.size()) settings.setValue("pos", self.pos()) settings.endGroup()
class GLWidget(CanvasBase): CAM_LEFT_X = -0.5 CAM_RIGHT_X = 0.5 CAM_BOTTOM_Y = 0.5 CAM_TOP_Y = -0.5 CAM_NEAR_Z = -14.0 CAM_FAR_Z = 14.0 COLOR_BACKGROUND = QColor.fromHsl(160, 0, 255, 255) COLOR_NORMAL = QColor.fromCmykF(1.0, 0.5, 0.0, 0.0, 1.0) COLOR_SELECT = QColor.fromCmykF(0.0, 1.0, 0.9, 0.0, 1.0) COLOR_NORMAL_DISABLED = QColor.fromCmykF(1.0, 0.5, 0.0, 0.0, 0.25) COLOR_SELECT_DISABLED = QColor.fromCmykF(0.0, 1.0, 0.9, 0.0, 0.25) COLOR_ENTRY_ARROW = QColor.fromRgbF(0.0, 0.0, 1.0, 1.0) COLOR_EXIT_ARROW = QColor.fromRgbF(0.0, 1.0, 0.0, 1.0) COLOR_ROUTE = QColor.fromRgbF(0.5, 0.0, 0.0, 1.0) COLOR_STMOVE = QColor.fromRgbF(0.5, 0.0, 0.25, 1.0) COLOR_BREAK = QColor.fromRgbF(1.0, 0.0, 1.0, 0.7) COLOR_LEFT = QColor.fromHsl(134, 240, 130, 255) COLOR_RIGHT = QColor.fromHsl(186, 240, 130, 255) def __init__(self, parent=None): super(GLWidget, self).__init__(parent) self.shapes = Shapes([]) self.orientation = 0 self.wpZero = 0 self.routearrows = [] self.expprv = None self.isPanning = False self.isRotating = False self.isMultiSelect = False self._lastPos = QPoint() self.posX = 0.0 self.posY = 0.0 self.posZ = 0.0 self.rotX = 0.0 self.rotY = 0.0 self.rotZ = 0.0 self.scale = 1.0 self.scaleCorr = 1.0 self.showPathDirections = False self.showDisabledPaths = False self.topLeft = Point() self.bottomRight = Point() self.tol = 0 def resetAll(self): self.gl.glDeleteLists(1, self.orientation) # the orientation arrows are currently generated last self.shapes = Shapes([]) self.wpZero = 0 self.orientation = 0 self.delete_opt_paths() self.posX = 0.0 self.posY = 0.0 self.posZ = 0.0 self.rotX = 0.0 self.rotY = 0.0 self.rotZ = 0.0 self.scale = 1.0 self.topLeft = Point() self.bottomRight = Point() self.update() def delete_opt_paths(self): if len(self.routearrows) > 0: self.gl.glDeleteLists(self.routearrows[0][2], len(self.routearrows)) self.routearrows = [] def addexproutest(self): self.expprv = Point3D(g.config.vars.Plane_Coordinates['axis1_start_end'], g.config.vars.Plane_Coordinates['axis2_start_end'], 0) def addexproute(self, exp_order, layer_nr): """ This function initialises the Arrows of the export route order and its numbers. """ for shape_nr in range(len(exp_order)): shape = self.shapes[exp_order[shape_nr]] st = self.expprv en, self.expprv = shape.get_start_end_points_physical() en = en.to3D(shape.axis3_start_mill_depth) self.expprv = self.expprv.to3D(shape.axis3_mill_depth) self.routearrows.append([st, en, 0]) # TODO self.routetext.append(RouteText(text=("%s,%s" % (layer_nr, shape_nr+1)), startp=en)) def addexprouteen(self): st = self.expprv en = Point3D(g.config.vars.Plane_Coordinates['axis1_start_end'], g.config.vars.Plane_Coordinates['axis2_start_end'], 0) self.routearrows.append([st, en, 0]) for route in self.routearrows: route[2] = self.makeRouteArrowHead(route[0], route[1]) def contextMenuEvent(self, event): if not self.isRotating: clicked, offset, _ = self.getClickedDetails(event) MyDropDownMenu(self, event.globalPos(), clicked, offset) def setXRotation(self, angle): self.rotX = self.normalizeAngle(angle) def setYRotation(self, angle): self.rotY = self.normalizeAngle(angle) def setZRotation(self, angle): self.rotZ = self.normalizeAngle(angle) def normalizeAngle(self, angle): return (angle - 180) % -360 + 180 def mousePressEvent(self, event): if self.isPanning or self.isRotating: self.setCursor(Qt.ClosedHandCursor) elif event.button() == Qt.LeftButton: clicked, offset, tol = self.getClickedDetails(event) xyForZ = {} for shape in self.shapes: hit = False z = shape.axis3_start_mill_depth if z not in xyForZ: xyForZ[z] = self.determineSelectedPosition(clicked, z, offset) hit |= shape.isHit(xyForZ[z], tol) if not hit: z = shape.axis3_mill_depth if z not in xyForZ: xyForZ[z] = self.determineSelectedPosition(clicked, z, offset) hit |= shape.isHit(xyForZ[z], tol) if self.isMultiSelect and shape.selected: hit = not hit if hit != shape.selected: g.window.TreeHandler.updateShapeSelection(shape, hit) shape.selected = hit self.update() self._lastPos = event.pos() def getClickedDetails(self, event): min_side = min(self.frameSize().width(), self.frameSize().height()) clicked = Point((event.pos().x() - self.frameSize().width() / 2), (event.pos().y() - self.frameSize().height() / 2)) / min_side / self.scale offset = Point3D(-self.posX, -self.posY, -self.posZ) / self.scale tol = 4 * self.scaleCorr / min_side / self.scale return clicked, offset, tol def determineSelectedPosition(self, clicked, forZ, offset): angleX = -radians(self.rotX) angleY = -radians(self.rotY) zv = forZ - offset.z clickedZ = ((zv + clicked.x * sin(angleY)) / cos(angleY) - clicked.y * sin(angleX)) / cos(angleX) sx, sy, sz = self.deRotate(clicked.x, clicked.y, clickedZ) return Point(sx + offset.x, - sy - offset.y) #, sz + offset.z def mouseReleaseEvent(self, event): if event.button() == Qt.LeftButton or event.button() == Qt.RightButton: if self.isPanning: self.setCursor(Qt.OpenHandCursor) elif self.isRotating: self.setCursor(Qt.PointingHandCursor) def mouseMoveEvent(self, event): dx = event.pos().x() - self._lastPos.x() dy = event.pos().y() - self._lastPos.y() if self.isRotating: if event.buttons() == Qt.LeftButton: self.setXRotation(self.rotX - dy / 2) self.setYRotation(self.rotY + dx / 2) elif event.buttons() == Qt.RightButton: self.setXRotation(self.rotX - dy / 2) self.setZRotation(self.rotZ + dx / 2) elif self.isPanning: if event.buttons() == Qt.LeftButton: min_side = min(self.frameSize().width(), self.frameSize().height()) dx, dy, dz = self.deRotate(dx, dy, 0) self.posX += dx / min_side self.posY += dy / min_side self.posZ += dz / min_side self._lastPos = event.pos() self.update() def wheelEvent(self, event): min_side = min(self.frameSize().width(), self.frameSize().height()) x = (event.pos().x() - self.frameSize().width() / 2) / min_side y = (event.pos().y() - self.frameSize().height() / 2) / min_side s = 1.001 ** event.angleDelta().y() x, y, z = self.deRotate(x, y, 0) self.posX = (self.posX - x) * s + x self.posY = (self.posY - y) * s + y self.posZ = (self.posZ - z) * s + z self.scale *= s self.update() def rotate(self, x, y, z): angleZ = radians(self.rotZ) x, y, z = x*cos(angleZ) - y*sin(angleZ), x*sin(angleZ) + y*cos(angleZ), z angleY = radians(self.rotY) x, y, z = x*cos(angleY) + z*sin(angleY), y, -x*sin(angleY) + z*cos(angleY) angleX = radians(self.rotX) return x, y*cos(angleX) - z*sin(angleX), y*sin(angleX) + z*cos(angleX) def deRotate(self, x, y, z): angleX = -radians(self.rotX) x, y, z = x, y*cos(angleX) - z*sin(angleX), y*sin(angleX) + z*cos(angleX) angleY = -radians(self.rotY) x, y, z = x*cos(angleY) + z*sin(angleY), y, -x*sin(angleY) + z*cos(angleY) angleZ = -radians(self.rotZ) return x*cos(angleZ) - y*sin(angleZ), x*sin(angleZ) + y*cos(angleZ), z def getRotationVectors(self, orgRefVector, toRefVector): """ Generate a rotation matrix such that toRefVector = matrix * orgRefVector @param orgRefVector: A 3D unit vector @param toRefVector: A 3D unit vector @return: 3 vectors such that matrix = [vx; vy; vz] """ # based on: # http://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d if orgRefVector == toRefVector: return Point3D(1, 0, 0), Point3D(0, 1, 0), Point3D(0, 0, 1) v = orgRefVector.cross_product(toRefVector) mn = (1 - orgRefVector * toRefVector) / v.length_squared() vx = Point3D(1, -v.z, v.y) + mn * Point3D(-v.y**2 - v.z**2, v.x * v.y, v.x * v.z) vy = Point3D(v.z, 1, -v.x) + mn * Point3D(v.x * v.y, -v.x**2 - v.z**2, v.y * v.z) vz = Point3D(-v.y, v.x, 1) + mn * Point3D(v.x * v.z, v.y * v.z, -v.x**2 - v.y**2) return vx, vy, vz def initializeGL(self): version = QOpenGLVersionProfile() version.setVersion(2, 0) self.gl = self.context().versionFunctions(version) self.gl.initializeOpenGLFunctions() self.setClearColor(GLWidget.COLOR_BACKGROUND) # self.gl.glPolygonMode(self.gl.GL_FRONT_AND_BACK, self.gl.GL_LINE ) self.gl.glShadeModel(self.gl.GL_SMOOTH) self.gl.glEnable(self.gl.GL_DEPTH_TEST) self.gl.glEnable(self.gl.GL_CULL_FACE) # self.gl.glEnable(self.gl.GL_LIGHTING) # self.gl.glEnable(self.gl.GL_LIGHT0) self.gl.glEnable(self.gl.GL_MULTISAMPLE) self.gl.glEnable(self.gl.GL_BLEND) self.gl.glBlendFunc(self.gl.GL_SRC_ALPHA, self.gl.GL_ONE_MINUS_SRC_ALPHA) # self.gl.glLightfv(self.gl.GL_LIGHT0, self.gl.GL_POSITION, (0.5, 5.0, 7.0, 1.0)) # self.gl.glEnable(self.gl.GL_NORMALIZE) def paintGL(self): # The last transformation you specify takes place first. self.gl.glClear(self.gl.GL_COLOR_BUFFER_BIT | self.gl.GL_DEPTH_BUFFER_BIT) self.gl.glLoadIdentity() self.gl.glRotatef(self.rotX, 1.0, 0.0, 0.0) self.gl.glRotatef(self.rotY, 0.0, 1.0, 0.0) self.gl.glRotatef(self.rotZ, 0.0, 0.0, 1.0) self.gl.glTranslatef(self.posX, self.posY, self.posZ) self.gl.glScalef(self.scale, self.scale, self.scale) for shape in self.shapes.selected_iter(): if not shape.disabled: self.setColor(GLWidget.COLOR_STMOVE) self.gl.glCallList(shape.drawStMove) self.setColor(GLWidget.COLOR_SELECT) self.gl.glCallList(shape.drawObject) elif self.showDisabledPaths: self.setColor(GLWidget.COLOR_SELECT_DISABLED) self.gl.glCallList(shape.drawObject) for shape in self.shapes.not_selected_iter(): if not shape.disabled: if shape.parentLayer.isBreakLayer(): self.setColor(GLWidget.COLOR_BREAK) elif shape.cut_cor == 41: self.setColor(GLWidget.COLOR_LEFT) elif shape.cut_cor == 42: self.setColor(GLWidget.COLOR_RIGHT) else: self.setColor(GLWidget.COLOR_NORMAL) self.gl.glCallList(shape.drawObject) if self.showPathDirections: self.setColor(GLWidget.COLOR_STMOVE) self.gl.glCallList(shape.drawStMove) elif self.showDisabledPaths: self.setColor(GLWidget.COLOR_NORMAL_DISABLED) self.gl.glCallList(shape.drawObject) # optimization route arrows self.setColor(GLWidget.COLOR_ROUTE) self.gl.glBegin(self.gl.GL_LINES) for route in self.routearrows: start = route[0] end = route[1] self.gl.glVertex3f(start.x, -start.y, start.z) self.gl.glVertex3f(end.x, -end.y, end.z) self.gl.glEnd() self.gl.glScalef(self.scaleCorr / self.scale, self.scaleCorr / self.scale, self.scaleCorr / self.scale) scaleArrow = self.scale / self.scaleCorr for route in self.routearrows: end = scaleArrow * route[1] self.gl.glTranslatef(end.x, -end.y, end.z) self.gl.glCallList(route[2]) self.gl.glTranslatef(-end.x, end.y, -end.z) # direction arrows for shape in self.shapes: if shape.selected and (not shape.disabled or self.showDisabledPaths) or\ self.showPathDirections and not shape.disabled: start, end = shape.get_start_end_points_physical() start = scaleArrow * start.to3D(shape.axis3_start_mill_depth) end = scaleArrow * end.to3D(shape.axis3_mill_depth) self.gl.glTranslatef(start.x, -start.y, start.z) self.gl.glCallList(shape.drawArrowsDirection[0]) self.gl.glTranslatef(-start.x, start.y, -start.z) self.gl.glTranslatef(end.x, -end.y, end.z) self.gl.glCallList(shape.drawArrowsDirection[1]) self.gl.glTranslatef(-end.x, end.y, -end.z) self.gl.glCallList(self.wpZero) self.gl.glTranslatef(-self.posX / self.scaleCorr, -self.posY / self.scaleCorr, -self.posZ / self.scaleCorr) self.gl.glCallList(self.orientation) def resizeGL(self, width, height): self.gl.glViewport(0, 0, width, height) side = min(width, height) self.gl.glMatrixMode(self.gl.GL_PROJECTION) self.gl.glLoadIdentity() if width >= height: scale_x = width / height self.gl.glOrtho(GLWidget.CAM_LEFT_X * scale_x, GLWidget.CAM_RIGHT_X * scale_x, GLWidget.CAM_BOTTOM_Y, GLWidget.CAM_TOP_Y, GLWidget.CAM_NEAR_Z, GLWidget.CAM_FAR_Z) else: scale_y = height / width self.gl.glOrtho(GLWidget.CAM_LEFT_X, GLWidget.CAM_RIGHT_X, GLWidget.CAM_BOTTOM_Y * scale_y, GLWidget.CAM_TOP_Y * scale_y, GLWidget.CAM_NEAR_Z, GLWidget.CAM_FAR_Z) self.scaleCorr = 400 / side self.gl.glMatrixMode(self.gl.GL_MODELVIEW) def setClearColor(self, c): self.gl.glClearColor(c.redF(), c.greenF(), c.blueF(), c.alphaF()) def setColor(self, c): self.setColorRGBA(c.redF(), c.greenF(), c.blueF(), c.alphaF()) def setColorRGBA(self, r, g, b, a): # self.gl.glMaterialfv(self.gl.GL_FRONT, self.gl.GL_DIFFUSE, (r, g, b, a)) self.gl.glColor4f(r, g, b, a) def plotAll(self, shapes): for shape in shapes: self.paint_shape(shape) self.shapes.append(shape) self.drawWpZero() self.drawOrientationArrows() def repaint_shape(self, shape): self.gl.glDeleteLists(shape.drawObject, 4) self.paint_shape(shape) def paint_shape(self, shape): shape.drawObject = self.makeShape(shape) # 1 object shape.stmove = StMove(shape) shape.drawStMove = self.makeStMove(shape.stmove) # 1 object shape.drawArrowsDirection = self.makeDirArrows(shape) # 2 objects def makeShape(self, shape): genList = self.gl.glGenLists(1) self.gl.glNewList(genList, self.gl.GL_COMPILE) self.gl.glBegin(self.gl.GL_LINES) shape.make_path(self.drawHorLine, self.drawVerLine) self.gl.glEnd() self.gl.glEndList() self.topLeft.detTopLeft(shape.topLeft) self.bottomRight.detBottomRight(shape.bottomRight) return genList def makeStMove(self, stmove): genList = self.gl.glGenLists(1) self.gl.glNewList(genList, self.gl.GL_COMPILE) self.gl.glBegin(self.gl.GL_LINES) stmove.make_path(self.drawHorLine, self.drawVerLine) self.gl.glEnd() self.gl.glEndList() return genList def drawHorLine(self, caller, Ps, Pe): self.gl.glVertex3f(Ps.x, -Ps.y, caller.axis3_start_mill_depth) self.gl.glVertex3f(Pe.x, -Pe.y, caller.axis3_start_mill_depth) self.gl.glVertex3f(Ps.x, -Ps.y, caller.axis3_mill_depth) self.gl.glVertex3f(Pe.x, -Pe.y, caller.axis3_mill_depth) def drawVerLine(self, caller, Ps): self.gl.glVertex3f(Ps.x, -Ps.y, caller.axis3_start_mill_depth) self.gl.glVertex3f(Ps.x, -Ps.y, caller.axis3_mill_depth) def drawOrientationArrows(self): rCone = 0.01 rCylinder = 0.004 zTop = 0.05 zMiddle = 0.02 zBottom = -0.03 segments = 20 arrow = self.gl.glGenLists(1) self.gl.glNewList(arrow, self.gl.GL_COMPILE) self.drawCone(Point(), rCone, zTop, zMiddle, segments) self.drawSolidCircle(Point(), rCone, zMiddle, segments) self.drawCylinder(Point(), rCylinder, zMiddle, zBottom, segments) self.drawSolidCircle(Point(), rCylinder, zBottom, segments) self.gl.glEndList() self.orientation = self.gl.glGenLists(1) self.gl.glNewList(self.orientation, self.gl.GL_COMPILE) self.setColorRGBA(0.0, 0.0, 1.0, 0.5) self.gl.glCallList(arrow) self.gl.glRotatef(90, 0, 1, 0) self.setColorRGBA(1.0, 0.0, 0.0, 0.5) self.gl.glCallList(arrow) self.gl.glRotatef(90, 1, 0, 0) self.setColorRGBA(0.0, 1.0, 0.0, 0.5) self.gl.glCallList(arrow) self.gl.glEndList() def drawWpZero(self): r = 0.02 segments = 20 # must be a multiple of 4 self.wpZero = self.gl.glGenLists(1) self.gl.glNewList(self.wpZero, self.gl.GL_COMPILE) self.setColorRGBA(0.2, 0.2, 0.2, 0.7) self.drawSphere(r, segments, segments // 4, segments, segments // 4) self.gl.glBegin(self.gl.GL_TRIANGLE_FAN) self.gl.glVertex3f(0, 0, 0) for i in range(segments // 4 + 1): ang = -i * 2 * pi / segments xy2 = Point().get_arc_point(ang, r) # self.gl.glNormal3f(0, -1, 0) self.gl.glVertex3f(xy2.x, 0, xy2.y) for i in range(segments // 4 + 1): ang = -i * 2 * pi / segments xy2 = Point().get_arc_point(ang, r) # self.gl.glNormal3f(-1, 0, 0) self.gl.glVertex3f(0, -xy2.y, -xy2.x) for i in range(segments // 4 + 1): ang = -i * 2 * pi / segments xy2 = Point().get_arc_point(ang, r) # self.gl.glNormal3f(0, 0, 1) self.gl.glVertex3f(-xy2.y, xy2.x, 0) self.gl.glEnd() self.setColorRGBA(0.6, 0.6, 0.6, 0.5) self.drawSphere(r * 1.25, segments, segments, segments, segments) self.gl.glEndList() def drawSphere(self, r, lats, mlats, longs, mlongs): lats //= 2 # based on http://www.cburch.com/cs/490/sched/feb8/index.html for i in range(mlats): lat0 = pi * (-0.5 + i / lats) z0 = r * sin(lat0) zr0 = r * cos(lat0) lat1 = pi * (-0.5 + (i + 1) / lats) z1 = r * sin(lat1) zr1 = r * cos(lat1) self.gl.glBegin(self.gl.GL_QUAD_STRIP) for j in range(mlongs + 1): lng = 2 * pi * j / longs x = cos(lng) y = sin(lng) self.gl.glNormal3f(x * zr0, y * zr0, z0) self.gl.glVertex3f(x * zr0, y * zr0, z0) self.gl.glNormal3f(x * zr1, y * zr1, z1) self.gl.glVertex3f(x * zr1, y * zr1, z1) self.gl.glEnd() def drawSolidCircle(self, origin, r, z, segments): self.gl.glBegin(self.gl.GL_TRIANGLE_FAN) # self.gl.glNormal3f(0, 0, -1) self.gl.glVertex3f(origin.x, -origin.y, z) for i in range(segments + 1): ang = -i * 2 * pi / segments xy2 = origin.get_arc_point(ang, r) self.gl.glVertex3f(xy2.x, -xy2.y, z) self.gl.glEnd() def drawCone(self, origin, r, zTop, zBottom, segments): self.gl.glBegin(self.gl.GL_TRIANGLE_FAN) self.gl.glVertex3f(origin.x, -origin.y, zTop) for i in range(segments + 1): ang = i * 2 * pi / segments xy2 = origin.get_arc_point(ang, r) # self.gl.glNormal3f(xy2.x, -xy2.y, zBottom) self.gl.glVertex3f(xy2.x, -xy2.y, zBottom) self.gl.glEnd() def drawCylinder(self, origin, r, zTop, zBottom, segments): self.gl.glBegin(self.gl.GL_QUAD_STRIP) for i in range(segments + 1): ang = i * 2 * pi / segments xy = origin.get_arc_point(ang, r) # self.gl.glNormal3f(xy.x, -xy.y, 0) self.gl.glVertex3f(xy.x, -xy.y, zTop) self.gl.glVertex3f(xy.x, -xy.y, zBottom) self.gl.glEnd() def makeDirArrows(self, shape): (start, start_dir), (end, end_dir) = shape.get_start_end_points_physical(None, False) startArrow = self.gl.glGenLists(1) self.gl.glNewList(startArrow, self.gl.GL_COMPILE) self.setColor(GLWidget.COLOR_ENTRY_ARROW) self.drawDirArrow(Point3D(), start_dir.to3D(), True) self.gl.glEndList() endArrow = self.gl.glGenLists(1) self.gl.glNewList(endArrow, self.gl.GL_COMPILE) self.setColor(GLWidget.COLOR_EXIT_ARROW) self.drawDirArrow(Point3D(), end_dir.to3D(), False) self.gl.glEndList() return startArrow, endArrow def drawDirArrow(self, origin, direction, startError): offset = 0.0 if startError else 0.05 zMiddle = -0.02 + offset zBottom = -0.05 + offset rx, ry, rz = self.getRotationVectors(Point3D(0, 0, 1), direction) self.drawArrowHead(origin, rx, ry, rz, offset) self.gl.glBegin(self.gl.GL_LINES) zeroMiddle = Point3D(0, 0, zMiddle) self.gl.glVertex3f(zeroMiddle * rx + origin.x, -zeroMiddle * ry - origin.y, zeroMiddle * rz + origin.z) zeroBottom = Point3D(0, 0, zBottom) self.gl.glVertex3f(zeroBottom * rx + origin.x, -zeroBottom * ry - origin.y, zeroBottom * rz + origin.z) self.gl.glEnd() def makeRouteArrowHead(self, start, end): if end == start: direction = Point3D(0, 0, 1) else: direction = (end - start).unit_vector() rx, ry, rz = self.getRotationVectors(Point3D(0, 0, 1), direction) head = self.gl.glGenLists(1) self.gl.glNewList(head, self.gl.GL_COMPILE) self.drawArrowHead(Point3D(), rx, ry, rz, 0) self.gl.glEndList() return head def drawArrowHead(self, origin, rx, ry, rz, offset): r = 0.01 segments = 10 zTop = 0 + offset zBottom = -0.02 + offset self.gl.glBegin(self.gl.GL_TRIANGLE_FAN) zeroTop = Point3D(0, 0, zTop) self.gl.glVertex3f(zeroTop * rx + origin.x, -zeroTop * ry - origin.y, zeroTop * rz + origin.z) for i in range(segments + 1): ang = i * 2 * pi / segments xy2 = Point().get_arc_point(ang, r).to3D(zBottom) self.gl.glVertex3f(xy2 * rx + origin.x, -xy2 * ry - origin.y, xy2 * rz + origin.z) self.gl.glEnd() self.gl.glBegin(self.gl.GL_TRIANGLE_FAN) zeroBottom = Point3D(0, 0, zBottom) self.gl.glVertex3f(zeroBottom * rx + origin.x, -zeroBottom * ry - origin.y, zeroBottom * rz + origin.z) for i in range(segments + 1): ang = -i * 2 * pi / segments xy2 = Point().get_arc_point(ang, r).to3D(zBottom) self.gl.glVertex3f(xy2 * rx + origin.x, -xy2 * ry - origin.y, xy2 * rz + origin.z) self.gl.glEnd() def setShowPathDirections(self, flag): self.showPathDirections = flag def setShowDisabledPaths(self, flag=True): self.showDisabledPaths = flag def autoscale(self): # TODO currently only works correctly when object is not rotated if self.frameSize().width() >= self.frameSize().height(): aspect_scale_x = self.frameSize().width() / self.frameSize().height() aspect_scale_y = 1 else: aspect_scale_x = 1 aspect_scale_y = self.frameSize().height() / self.frameSize().width() scaleX = (GLWidget.CAM_RIGHT_X - GLWidget.CAM_LEFT_X) * aspect_scale_x / (self.bottomRight.x - self.topLeft.x) scaleY = (GLWidget.CAM_BOTTOM_Y - GLWidget.CAM_TOP_Y) * aspect_scale_y / (self.topLeft.y - self.bottomRight.y) self.scale = min(scaleX, scaleY) * 0.95 self.posX = ((GLWidget.CAM_LEFT_X + GLWidget.CAM_RIGHT_X) * 0.95 * aspect_scale_x - (self.topLeft.x + self.bottomRight.x) * self.scale) / 2 self.posY = -((GLWidget.CAM_TOP_Y + GLWidget.CAM_BOTTOM_Y) * 0.95 * aspect_scale_y - (self.topLeft.y + self.bottomRight.y) * self.scale) / 2 self.posZ = 0 self.update() def topView(self): self.rotX = 0 self.rotY = 0 self.rotZ = 0 self.update() def isometricView(self): self.rotX = -22 self.rotY = -22 self.rotZ = 0 self.update()
class MainWindow(): """ Main Class """ # Define a QT signal that is emitted when the configuration changes. # Connect to this signal if you need to know when the configuration has # changed. # configuration_changed = QtCore.pyqtSignal() def __init__(self): """ Initialization of the Main window. This is directly called after the Logger has been initialized. The Function loads the GUI, creates the used Classes and connects the actions to the GUI. """ self.config_window = ConfigWindow(g.config.makeConfigWidgets(), g.config.var_dict, g.config.var_dict.configspec, self) self.canvas_scene = None #Load the post-processor configuration and build the post-processor configuration window self.MyPostProcessor = MyPostProcessor() # If string version_mismatch isn't empty, we popup an error and exit self.filename = "" self.valuesDXF = None self.shapes = Shapes([]) self.entityRoot = None self.layerContents = Layers([]) self.newNumber = 1 self.cont_dx = 0.0 self.cont_dy = 0.0 self.cont_rotate = 0.0 self.cont_scale = 1.0 # self.readSettings() def tr(self, string_to_translate): """ Translate a string using the QCoreApplication translation framework @param: string_to_translate: a unicode string @return: the translated unicode string if it was possible to translate """ return text_type(string_to_translate) def deleteG0Paths(self): """ Deletes the optimisation paths from the scene. """ self.canvas_scene.delete_opt_paths() self.canvas_scene.update() def exportShapes(self, status=False, save_filename=None): """ This function is called by the menu "Export/Export Shapes". It may open a Save Dialog if used without LinuxCNC integration. Otherwise it's possible to select multiple postprocessor files, which are located in the folder. """ self.MyPostProcessor.exportShapes(self.filename, save_filename, self.layerContents) # self.close() def open(self): """ This function is called by the menu "File/Load File" of the main toolbar. It creates the file selection dialog and calls the load function to load the selected file. """ # If there is something to load then call the load function callback if self.filename: self.cont_dx = 0.0 self.cont_dy = 0.0 self.cont_rotate = 0.0 self.cont_scale = 1.0 self.load() def load(self, plot=True): """ Loads the file given by self.filename. Also calls the command to make the plot. @param plot: if it should plot """ (name, ext) = os.path.splitext(self.filename) logger.info(self.tr('Loading file: %s') % self.filename) self.valuesDXF = ReadDXF(self.filename) # Output the information in the text window logger.info(self.tr('Loaded layers: %s') % len(self.valuesDXF.layers)) logger.info( self.tr('Loaded blocks: %s') % len(self.valuesDXF.blocks.Entities)) for i in range(len(self.valuesDXF.blocks.Entities)): layers = self.valuesDXF.blocks.Entities[i].get_used_layers() logger.info( self. tr('Block %i includes %i Geometries, reduced to %i Contours, used layers: %s' ) % (i, len(self.valuesDXF.blocks.Entities[i].geo), len(self.valuesDXF.blocks.Entities[i].cont), layers)) layers = self.valuesDXF.entities.get_used_layers() insert_nr = self.valuesDXF.entities.get_insert_nr() logger.info( self. tr('Loaded %i entity geometries; reduced to %i contours; used layers: %s; number of inserts %i' ) % (len(self.valuesDXF.entities.geo), len(self.valuesDXF.entities.cont), layers, insert_nr)) self.makeShapes() if plot: self.plot() return True def plot(self): # Paint the canvas self.canvas_scene = MyNoGraphicsScene() self.canvas_scene.plotAll(self.shapes) def makeShapes(self): self.entityRoot = EntityContent( nr=0, name='Entities', parent=None, p0=Point(self.cont_dx, self.cont_dy), pb=Point(), sca=[self.cont_scale, self.cont_scale, self.cont_scale], rot=self.cont_rotate) self.layerContents = Layers([]) self.shapes = Shapes([]) self.makeEntityShapes(self.entityRoot) for layerContent in self.layerContents: layerContent.overrideDefaults() self.layerContents.sort(key=lambda x: x.nr) self.newNumber = len(self.shapes) def makeEntityShapes(self, parent, layerNr=-1): """ Instance is called prior to plotting the shapes. It creates all shape classes which are plotted into the canvas. @param parent: The parent of a shape is always an Entity. It may be the root or, if it is a Block, this is the Block. """ if parent.name == "Entities": entities = self.valuesDXF.entities else: ent_nr = self.valuesDXF.Get_Block_Nr(parent.name) entities = self.valuesDXF.blocks.Entities[ent_nr] # Assigning the geometries in the variables geos & contours in cont ent_geos = entities.geo # Loop for the number of contours for cont in entities.cont: # Query if it is in the contour of an insert or of a block if ent_geos[cont.order[0][0]].Typ == "Insert": ent_geo = ent_geos[cont.order[0][0]] # Assign the base point for the block new_ent_nr = self.valuesDXF.Get_Block_Nr(ent_geo.BlockName) new_entities = self.valuesDXF.blocks.Entities[new_ent_nr] pb = new_entities.basep # Scaling, etc. assign the block p0 = ent_geos[cont.order[0][0]].Point sca = ent_geos[cont.order[0][0]].Scale rot = ent_geos[cont.order[0][0]].rot # Creating the new Entitie Contents for the insert newEntityContent = EntityContent(nr=0, name=ent_geo.BlockName, parent=parent, p0=p0, pb=pb, sca=sca, rot=rot) parent.append(newEntityContent) self.makeEntityShapes(newEntityContent, ent_geo.Layer_Nr) else: # Loop for the number of geometries tmp_shape = Shape(len(self.shapes), (True if cont.closed else False), parent) for ent_geo_nr in range(len(cont.order)): ent_geo = ent_geos[cont.order[ent_geo_nr][0]] if cont.order[ent_geo_nr][1]: ent_geo.geo.reverse() for geo in ent_geo.geo: geo = copy(geo) geo.reverse() self.append_geo_to_shape(tmp_shape, geo) ent_geo.geo.reverse() else: for geo in ent_geo.geo: self.append_geo_to_shape(tmp_shape, copy(geo)) if len(tmp_shape.geos) > 0: # All shapes have to be CW direction. tmp_shape.AnalyseAndOptimize() self.shapes.append(tmp_shape) if g.config.vars.Import_Parameters[ 'insert_at_block_layer'] and layerNr != -1: self.addtoLayerContents(tmp_shape, layerNr) else: self.addtoLayerContents(tmp_shape, ent_geo.Layer_Nr) parent.append(tmp_shape) def append_geo_to_shape(self, shape, geo): if -1e-5 <= geo.length < 1e-5: # TODO adjust import for this return shape.append(geo) if isinstance(geo, HoleGeo): shape.type = 'Hole' shape.closed = True # TODO adjust import for holes? def addtoLayerContents(self, shape, lay_nr): # Check if the layer already exists and add shape if it is. for LayCon in self.layerContents: if LayCon.nr == lay_nr: LayCon.shapes.append(shape) shape.parentLayer = LayCon return # If the Layer does not exist create a new one. LayerName = self.valuesDXF.layers[lay_nr].name self.layerContents.append(LayerContent(lay_nr, LayerName, [shape])) shape.parentLayer = self.layerContents[-1]