예제 #1
0
def convert_max_pooling(identifier, spec, previous_layer):
    return MaxPooling2D(
        name=identifier,
        pool_size=(spec.kernel_size, spec.kernel_size),
        strides=(spec.stride, spec.stride),
        inbound_nodes=[previous_layer.name],
    )
예제 #2
0
def darknet(inputs, data_format):
    """Creates Darknet model"""
    filters = 16
    for _ in range(4):
        inputs = Conv2D(inputs,
                        filters,
                        kernel_size=3,
                        data_format=data_format)
        inputs = BatchNormalization(inputs, data_format=data_format)
        inputs = LeakyReLU(inputs)
        inputs = MaxPooling2D(inputs,
                              pool_size=[2, 2],
                              strides=[2, 2],
                              data_format=data_format)
        filters *= 2

    inputs = Conv2D(inputs,
                    filters=256,
                    kernel_size=3,
                    data_format=data_format)
    inputs = BatchNormalization(inputs, data_format=data_format)
    inputs = LeakyReLU(inputs)
    route = inputs  # layers 8
    inputs = MaxPooling2D(inputs,
                          pool_size=[2, 2],
                          strides=[2, 2],
                          data_format=data_format)

    inputs = Conv2D(inputs,
                    filters=512,
                    kernel_size=3,
                    data_format=data_format)
    inputs = BatchNormalization(inputs, data_format=data_format)
    inputs = LeakyReLU(inputs)
    inputs = MaxPooling2D(inputs,
                          pool_size=[2, 2],
                          strides=[1, 1],
                          data_format=data_format)

    inputs = Conv2D(inputs,
                    filters=1024,
                    kernel_size=3,
                    data_format=data_format)
    inputs = BatchNormalization(inputs, data_format=data_format)
    inputs = LeakyReLU(inputs)
    return inputs, route
예제 #3
0
def convert_max_pooling(spec, previous_layer):
    print(dir(spec))
    return MaxPooling2D(
        name=spec._get_name(),
        pool_size=spec.kernel_size,
        strides=spec.stride,
        inbound_nodes=[previous_layer],
    )
예제 #4
0
def convert(keras_model, class_map, description="Neural Network Model"):
    """
	Convert a keras model to PMML
	@model. The keras model object
	@class_map. A map in the form {class_id: class_name}
	@description. A short description of the model
	Returns a DeepNeuralNetwork object which can be exported to PMML
	"""
    pmml = DeepNetwork(description=description, class_map=class_map)
    pmml.keras_model = keras_model
    pmml.model_name = keras_model.name
    config = keras_model.get_config()

    for layer in config['layers']:
        layer_class = layer['class_name']
        layer_config = layer['config']
        layer_inbound_nodes = layer['inbound_nodes']
        # Input
        if layer_class is "InputLayer":
            pmml._append_layer(
                InputLayer(name=layer_config['name'],
                           input_size=layer_config['batch_input_shape'][1:]))
        # Conv2D
        elif layer_class is "Conv2D":
            pmml._append_layer(
                Conv2D(
                    name=layer_config['name'],
                    channels=layer_config['filters'],
                    kernel_size=layer_config['kernel_size'],
                    dilation_rate=layer_config['dilation_rate'],
                    use_bias=layer_config['use_bias'],
                    activation=layer_config['activation'],
                    strides=layer_config['strides'],
                    padding=layer_config['padding'],
                    inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
                ))
        # DepthwiseConv2D
        elif layer_class is "DepthwiseConv2D":
            pmml._append_layer(
                DepthwiseConv2D(
                    name=layer_config['name'],
                    kernel_size=layer_config['kernel_size'],
                    depth_multiplier=layer_config['depth_multiplier'],
                    use_bias=layer_config['use_bias'],
                    activation=layer_config['activation'],
                    strides=layer_config['strides'],
                    padding=layer_config['padding'],
                    inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
                ))
        # MaxPooling
        elif layer_class is "MaxPooling2D":
            pmml._append_layer(
                MaxPooling2D(
                    name=layer_config['name'],
                    pool_size=layer_config['pool_size'],
                    strides=layer_config['strides'],
                    inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
                ))
        elif layer_class is "AveragePooling2D":
            pmml._append_layer(
                AveragePooling2D(
                    name=layer_config['name'],
                    pool_size=layer_config['pool_size'],
                    strides=layer_config['strides'],
                    inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
                ))
        elif layer_class is "GlobalAveragePooling2D":
            pmml._append_layer(
                GlobalAveragePooling2D(
                    name=layer_config['name'],
                    inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
                ))
        # Flatten
        elif layer_class is "Flatten":
            pmml._append_layer(
                Flatten(
                    name=layer_config['name'],
                    inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
                ))
        # Dense
        elif layer_class is "Dense":
            pmml._append_layer(
                Dense(
                    name=layer_config['name'],
                    channels=layer_config['units'],
                    use_bias=layer_config['use_bias'],
                    activation=layer_config['activation'],
                    inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
                ))
        # Zero padding layer
        elif layer_class is "ZeroPadding2D":
            pmml._append_layer(
                ZeroPadding2D(
                    name=layer_config['name'],
                    padding=layer_config['padding'],
                    inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
                ))
        # Reshape layer
        elif layer_class is "Reshape":
            pmml._append_layer(
                Reshape(
                    name=layer_config['name'],
                    target_shape=layer_config['target_shape'],
                    inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
                ))
        elif layer_class is "Dropout":
            pmml._append_layer(
                Dropout(
                    name=layer_config['name'],
                    inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
                ))
        # Batch Normalization
        elif layer_class is "BatchNormalization":
            pmml._append_layer(
                BatchNormalization(
                    name=layer_config['name'],
                    axis=layer_config['axis'],
                    momentum=layer_config['momentum'],
                    epsilon=layer_config['epsilon'],
                    center=layer_config['center'],
                    inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
                ))
        elif layer_class is "Add":
            pmml._append_layer(
                Merge(name=layer_config['name'],
                      inbound_nodes=get_inbound_nodes(layer_inbound_nodes)))
        elif layer_class is "Subtract":
            pmml._append_layer(
                Merge(name=layer_config['name'],
                      operator='subtract',
                      inbound_nodes=get_inbound_nodes(layer_inbound_nodes)))
        elif layer_class is "Dot":
            pmml._append_layer(
                Merge(name=layer_config['name'],
                      operator='dot',
                      inbound_nodes=get_inbound_nodes(layer_inbound_nodes)))
        elif layer_class is "Concatenate":
            pmml._append_layer(
                Merge(name=layer_config['name'],
                      axis=layer_config['axis'],
                      operator='concatenate',
                      inbound_nodes=get_inbound_nodes(layer_inbound_nodes)))
        elif layer_class is "Activation":
            pmml._append_layer(
                Activation(
                    name=layer_config['name'],
                    activation=layer_config['activation'],
                    inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
                ))
        elif layer_class is "ReLU":
            pmml._append_layer(
                Activation(
                    name=layer_config['name'],
                    activation='relu',
                    threshold=layer_config['threshold'],
                    max_value=layer_config['max_value'],
                    negative_slope=layer_config['negative_slope'],
                    inbound_nodes=get_inbound_nodes(layer_inbound_nodes),
                ))
        # Unknown layer
        else:
            raise ValueError("Unknown layer type:", layer_class)
    return pmml
예제 #5
0
import numpy as np
from core.layers import Dense, Dropout, Conv2D, Flatten, ReLU, Softmax, MaxPooling2D
from core.model import Model
from core.utils import load_mnist
from core.optimizer import SGD
from core.loss import CategoricalCrossEntropy
import matplotlib.pyplot as plt

np.random.seed(1234)

model = Model()

model.add(Conv2D(filters=1, shape=(28, 28, 1), kernel_size=(3, 3)))
model.add(ReLU())
model.add(MaxPooling2D(shape=(2, 2)))
model.add(Flatten())
model.add(Dense(shape=(169, 128)))  #676
model.add(ReLU())
model.add(Dense(shape=(128, 10)))
model.add(Softmax())

model.compile(optimizer=SGD(lr=0.01), loss=CategoricalCrossEntropy())

(x, y), (x_test, y_test) = load_mnist()
x = x.reshape(x.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

train_loss_cnn, train_acc_cnn, val_loss_cnn, val_acc_cnn = model.fit(
    x, y, x_test, y_test, epoch=10, batch_size=32)

plt.plot(train_acc_cnn, label='cnn train accuracy')