예제 #1
0
def train_net(args, ctx, pretrained, pretrained_base, pretrained_ec, epoch,
              prefix, begin_epoch, end_epoch, lr, lr_step):
    logger, final_output_path = create_logger(config.output_path, args.cfg,
                                              config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)

    # load symbol
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'),
                 final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_train_symbol(config)

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    segdbs = [
        load_gt_segdb(config.dataset.dataset,
                      image_set,
                      config.dataset.root_path,
                      config.dataset.dataset_path,
                      result_path=final_output_path,
                      flip=config.TRAIN.FLIP) for image_set in image_sets
    ]
    segdb = merge_segdb(segdbs)

    # load training data
    train_data = TrainDataLoader(sym,
                                 segdb,
                                 config,
                                 batch_size=input_batch_size,
                                 crop_height=config.TRAIN.CROP_HEIGHT,
                                 crop_width=config.TRAIN.CROP_WIDTH,
                                 shuffle=config.TRAIN.SHUFFLE,
                                 ctx=ctx)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3,
                                max([v[0] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES]))),
                      ('data_ref', (config.TRAIN.KEY_INTERVAL - 1, 3,
                                    max([v[0] for v in config.SCALES]),
                                    max([v[1] for v in config.SCALES]))),
                      ('eq_flag', (1, ))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    print 'providing maximum shape', max_data_shape, max_label_shape

    data_shape_dict = dict(train_data.provide_data_single +
                           train_data.provide_label_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    # load and initialize params
    if config.TRAIN.RESUME:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        print pretrained
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        arg_params_base, aux_params_base = load_param(pretrained_base,
                                                      epoch,
                                                      convert=True)
        arg_params.update(arg_params_base)
        aux_params.update(aux_params_base)
        arg_params_ec, aux_params_ec = load_param(
            pretrained_ec,
            epoch,
            convert=True,
            argprefix=config.TRAIN.arg_prefix)
        arg_params.update(arg_params_ec)
        aux_params.update(aux_params_ec)
        sym_instance.init_weight(config, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params,
                                        data_shape_dict)

    # create solver
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in range(batch_size)],
        max_label_shapes=[max_label_shape for _ in range(batch_size)],
        fixed_param_prefix=fixed_param_prefix)

    if config.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch)

    # decide training params
    # metric
    fcn_loss_metric = metric.FCNLogLossMetric(config.default.frequent *
                                              batch_size)
    eval_metrics = mx.metric.CompositeEvalMetric()

    for child_metric in [fcn_loss_metric]:
        eval_metrics.add(child_metric)

    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=args.frequent)
    epoch_end_callback = mx.callback.module_checkpoint(
        mod, prefix, period=1, save_optimizer_states=True)

    # decide learning rate
    base_lr = lr
    lr_factor = 0.1
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(segdb) / batch_size) for epoch in lr_epoch_diff
    ]
    print 'lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters

    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor,
                                              config.TRAIN.warmup,
                                              config.TRAIN.warmup_lr,
                                              config.TRAIN.warmup_step)

    # optimizer
    optimizer_params = {
        'momentum': config.TRAIN.momentum,
        'wd': config.TRAIN.wd,
        'learning_rate': lr,
        'lr_scheduler': lr_scheduler,
        'rescale_grad': 1.0,
        'clip_gradient': None
    }

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=config.default.kvstore,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr,
              lr_step):
    """Main train function for segmentation

    Args:
        args:
            paramenter parser
        ctx:
            GPU context
        pretrained:
            pretrained file path
        epoch:
            pretrained checkpoint epoch
        prefix:
            model save name prefix
        begin_epoch:
            which epoch start to train
        end_epoch:
            eneded epoch of training phase
        lr:
            learning rate
        lr_step:
            list of epoch number to do learning rate decay

    """
    ##########################################
    # Step 1. Create logger and set up the save prefix
    ##########################################
    logger, final_output_path = create_logger(config.output_path, args.cfg,
                                              config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)

    ##########################################
    # Step 2. Copy the symbols and load the symbol to build network
    ##########################################
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'),
                 final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=True)
    #
    #sym = eval('get_' + args.network + '_train')(num_classes=config.dataset.NUM_CLASSES)

    ##########################################
    # Step 3. Setup multi-gpu and batch size
    ##########################################
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    ############################################
    # Step 4. load dataset and prepare imdb for training
    ############################################
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    segdbs = [
        load_gt_segdb(config.dataset.dataset,
                      image_set,
                      config.dataset.root_path,
                      config.dataset.dataset_path,
                      result_path=final_output_path,
                      flip=config.TRAIN.FLIP) for image_set in image_sets
    ]
    segdb = merge_segdb(segdbs)

    ############################################
    # Step 5. Set dataloader and set the data shape
    ############################################
    train_data = TrainDataLoader(sym,
                                 segdb,
                                 config,
                                 batch_size=input_batch_size,
                                 crop_height=config.TRAIN.CROP_HEIGHT,
                                 crop_width=config.TRAIN.CROP_WIDTH,
                                 shuffle=config.TRAIN.SHUFFLE,
                                 ctx=ctx)

    # infer max shape
    max_scale = [(config.TRAIN.CROP_HEIGHT, config.TRAIN.CROP_WIDTH)]
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3,
                                max([v[0] for v in max_scale]),
                                max([v[1] for v in max_scale])))]
    max_label_shape = [('label', (config.TRAIN.BATCH_IMAGES, 1,
                                  max([v[0] for v in max_scale]),
                                  max([v[1] for v in max_scale])))]
    # max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape, max_label_shape)
    print('providing maximum shape', max_data_shape, max_label_shape)

    # infer shape
    data_shape_dict = dict(train_data.provide_data_single +
                           train_data.provide_label_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    ##############################################
    # Step 6. load and initialize params
    ##############################################
    if config.TRAIN.RESUME:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        print(pretrained)
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        sym_instance.init_weights(config, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params,
                                        data_shape_dict)

    ##############################################
    # Step 6 Create solver and set metrics
    ##############################################
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in xrange(batch_size)],
        max_label_shapes=[max_label_shape for _ in xrange(batch_size)],
        fixed_param_prefix=fixed_param_prefix)

    # decide training params
    # metric
    fcn_loss_metric = metric.FCNLogLossMetric(config.default.frequent *
                                              batch_size)
    eval_metrics = mx.metric.CompositeEvalMetric()

    # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric
    for child_metric in [fcn_loss_metric]:
        eval_metrics.add(child_metric)

    ##############################################
    # Step 7. Set callback for training process
    ##############################################
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=args.frequent)
    epoch_end_callback = mx.callback.module_checkpoint(
        mod, prefix, period=1, save_optimizer_states=True)

    ##############################################
    # Step 8. Decide learning rate and optimizers
    ##############################################
    base_lr = lr
    lr_factor = 0.1
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(segdb) / batch_size) for epoch in lr_epoch_diff
    ]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)

    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor,
                                              config.TRAIN.warmup,
                                              config.TRAIN.warmup_lr,
                                              config.TRAIN.warmup_step)

    # optimizer
    optimizer_params = {
        'momentum': config.TRAIN.momentum,
        'wd': config.TRAIN.wd,
        'learning_rate': lr,
        'lr_scheduler': lr_scheduler,
        'rescale_grad': 1.0,
        'clip_gradient': None
    }

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    ##############################################
    # Step 9 Start to train
    ##############################################
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=config.default.kvstore,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
예제 #3
0
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr,
              lr_step):
    new_args_name = args.cfg
    if args.vis:
        config.TRAIN.VISUALIZE = True
    logger, final_output_path = create_logger(config.output_path,
                                              new_args_name,
                                              config.dataset.image_set,
                                              args.temp)
    prefix = os.path.join(final_output_path, prefix)
    logger.info('called with args {}'.format(args))

    print(config.train_iter.SE3_PM_LOSS)
    if config.train_iter.SE3_PM_LOSS:
        print("SE3_PM_LOSS == True")
    else:
        print("SE3_PM_LOSS == False")

    if not config.network.STANDARD_FLOW_REP:
        print_and_log("[h, w] representation for flow is dep", logger)

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    datasets = [dset for dset in config.dataset.dataset.split('+')]
    print("config.dataset.class_name: {}".format(config.dataset.class_name))
    print("image_sets: {}".format(image_sets))
    if datasets[0].startswith('ModelNet'):
        pairdbs = [
            load_gt_pairdb(config,
                           datasets[i],
                           image_sets[i] + class_name.split('/')[-1],
                           config.dataset.root_path,
                           config.dataset.dataset_path,
                           class_name=class_name,
                           result_path=final_output_path)
            for class_name in config.dataset.class_name
            for i in range(len(image_sets))
        ]
    else:
        pairdbs = [
            load_gt_pairdb(config,
                           datasets[i],
                           image_sets[i] + class_name,
                           config.dataset.root_path,
                           config.dataset.dataset_path,
                           class_name=class_name,
                           result_path=final_output_path)
            for class_name in config.dataset.class_name
            for i in range(len(image_sets))
        ]
    pairdb = merge_pairdb(pairdbs)

    if not args.temp:
        src_file = os.path.join(curr_path, 'symbols', config.symbol + '.py')
        dst_file = os.path.join(
            final_output_path,
            '{}_{}.py'.format(config.symbol, time.strftime('%Y-%m-%d-%H-%M')))
        os.popen('cp {} {}'.format(src_file, dst_file))

    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=True)

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_PAIRS * batch_size

    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    # load training data
    train_data = TrainDataLoader(sym,
                                 pairdb,
                                 config,
                                 batch_size=input_batch_size,
                                 shuffle=config.TRAIN.SHUFFLE,
                                 ctx=ctx)

    train_data.get_batch_parallel()
    max_scale = [
        max([v[0] for v in config.SCALES]),
        max(v[1] for v in config.SCALES)
    ]
    max_data_shape = [('image_observed', (config.TRAIN.BATCH_PAIRS, 3,
                                          max_scale[0], max_scale[1])),
                      ('image_rendered', (config.TRAIN.BATCH_PAIRS, 3,
                                          max_scale[0], max_scale[1])),
                      ('depth_gt_observed', (config.TRAIN.BATCH_PAIRS, 1,
                                             max_scale[0], max_scale[1])),
                      ('src_pose', (config.TRAIN.BATCH_PAIRS, 3, 4)),
                      ('tgt_pose', (config.TRAIN.BATCH_PAIRS, 3, 4))]
    if config.network.INPUT_DEPTH:
        max_data_shape.append(('depth_observed', (config.TRAIN.BATCH_PAIRS, 1,
                                                  max_scale[0], max_scale[1])))
        max_data_shape.append(('depth_rendered', (config.TRAIN.BATCH_PAIRS, 1,
                                                  max_scale[0], max_scale[1])))
    if config.network.INPUT_MASK:
        max_data_shape.append(('mask_observed', (config.TRAIN.BATCH_PAIRS, 1,
                                                 max_scale[0], max_scale[1])))
        max_data_shape.append(('mask_rendered', (config.TRAIN.BATCH_PAIRS, 1,
                                                 max_scale[0], max_scale[1])))

    rot_param = 3 if config.network.ROT_TYPE == "EULER" else 4
    max_label_shape = [('rot', (config.TRAIN.BATCH_PAIRS, rot_param)),
                       ('trans', (config.TRAIN.BATCH_PAIRS, 3))]
    if config.network.PRED_FLOW:
        max_label_shape.append(('flow', (config.TRAIN.BATCH_PAIRS, 2,
                                         max_scale[0], max_scale[1])))
        max_label_shape.append(('flow_weights', (config.TRAIN.BATCH_PAIRS, 2,
                                                 max_scale[0], max_scale[1])))
    if config.train_iter.SE3_PM_LOSS:
        max_label_shape.append(
            ('point_cloud_model', (config.TRAIN.BATCH_PAIRS, 3,
                                   config.train_iter.NUM_3D_SAMPLE)))
        max_label_shape.append(
            ('point_cloud_weights', (config.TRAIN.BATCH_PAIRS, 3,
                                     config.train_iter.NUM_3D_SAMPLE)))
        max_label_shape.append(
            ('point_cloud_observed', (config.TRAIN.BATCH_PAIRS, 3,
                                      config.train_iter.NUM_3D_SAMPLE)))
    if config.network.PRED_MASK:
        max_label_shape.append(
            ('mask_gt_observed', (config.TRAIN.BATCH_PAIRS, 1, max_scale[0],
                                  max_scale[1])))

    # max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape, max_label_shape)
    print_and_log(
        'providing maximum shape, {}, {}'.format(max_data_shape,
                                                 max_label_shape), logger)

    # infer max shape
    '''
    max_label_shape = [('label', (config.TRAIN.BATCH_IMAGES, 1,
                                  max([v[0] for v in max_scale]),
                                  max([v[1] for v in max_scale])))]
    max_data_shape, max_label_shape = train_data.infer_shape(
        max_data_shape, max_label_shape)
    print('providing maximum shape', max_data_shape, max_label_shape)
    '''
    # infer shape
    data_shape_dict = dict(train_data.provide_data_single +
                           train_data.provide_label_single)
    print_and_log('\ndata_shape_dict: {}\n'.format(data_shape_dict), logger)
    sym_instance.infer_shape(data_shape_dict)

    print('************(wg): infering shape **************')
    internals = sym.get_internals()
    _, out_shapes, _ = internals.infer_shape(**data_shape_dict)
    print(sym.list_outputs())
    shape_dict = dict(zip(internals.list_outputs(), out_shapes))
    pprint.pprint(shape_dict)

    # load and initialize params
    if config.TRAIN.RESUME:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    elif pretrained == 'xavier':
        print('xavier')
        # arg_params = {}
        # aux_params = {}
        # sym_instance.init_weights(config, arg_params, aux_params)
    else:
        print(pretrained)
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        print('arg_params: ', arg_params.keys())
        print('aux_params: ', aux_params.keys())
        if not config.network.skip_initialize:
            sym_instance.init_weights(config, arg_params, aux_params)

    # check parameter shapes
    if pretrained != 'xavier':
        sym_instance.check_parameter_shapes(arg_params, aux_params,
                                            data_shape_dict)

    # create solver
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in range(batch_size)],
        max_label_shapes=[max_label_shape for _ in range(batch_size)],
        fixed_param_prefix=fixed_param_prefix,
        config=config)

    # decide training params
    # metrics
    eval_metrics = mx.metric.CompositeEvalMetric()

    metric_list = []
    iter_idx = 0
    if config.network.PRED_FLOW:
        metric_list.append(metric.Flow_L2LossMetric(config, iter_idx))
        metric_list.append(metric.Flow_CurLossMetric(config, iter_idx))
    if config.train_iter.SE3_DIST_LOSS:
        metric_list.append(metric.Rot_L2LossMetric(config, iter_idx))
        metric_list.append(metric.Trans_L2LossMetric(config, iter_idx))
    if config.train_iter.SE3_PM_LOSS:
        metric_list.append(metric.PointMatchingLossMetric(config, iter_idx))
    if config.network.PRED_MASK:
        metric_list.append(metric.MaskLossMetric(config, iter_idx))

    # Visualize Training Batches
    if config.TRAIN.VISUALIZE:
        metric_list.append(metric.SimpleVisualize(config))
        # metric_list.append(metric.MaskVisualize(config, save_dir = final_output_path))
        metric_list.append(
            metric.MinibatchVisualize(config))  # flow visualization

    for child_metric in metric_list:
        eval_metrics.add(child_metric)

    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=args.frequent)
    epoch_end_callback = mx.callback.module_checkpoint(
        mod, prefix, period=1, save_optimizer_states=True)
    # decide learning rate
    base_lr = lr
    lr_factor = 0.1
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(pairdb) / batch_size) for epoch in lr_epoch_diff
    ]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)

    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor,
                                              config.TRAIN.warmup,
                                              config.TRAIN.warmup_lr,
                                              config.TRAIN.warmup_step)

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    # train
    if config.TRAIN.optimizer == 'adam':
        optimizer_params = {'learning_rate': lr}
        if pretrained == 'xavier':
            init = mx.init.Mixed(['rot_weight|trans_weight', '.*'], [
                mx.init.Zero(),
                mx.init.Xavier(
                    rnd_type='gaussian', factor_type="in", magnitude=2)
            ])
            mod.fit(train_data,
                    eval_metric=eval_metrics,
                    epoch_end_callback=epoch_end_callback,
                    batch_end_callback=batch_end_callback,
                    kvstore=config.default.kvstore,
                    optimizer='adam',
                    optimizer_params=optimizer_params,
                    begin_epoch=begin_epoch,
                    num_epoch=end_epoch,
                    prefix=prefix,
                    initializer=init,
                    force_init=True)
        else:
            mod.fit(train_data,
                    eval_metric=eval_metrics,
                    epoch_end_callback=epoch_end_callback,
                    batch_end_callback=batch_end_callback,
                    kvstore=config.default.kvstore,
                    optimizer='adam',
                    arg_params=arg_params,
                    aux_params=aux_params,
                    begin_epoch=begin_epoch,
                    num_epoch=end_epoch,
                    prefix=prefix)
    elif config.TRAIN.optimizer == 'sgd':
        # optimizer
        optimizer_params = {
            'momentum': config.TRAIN.momentum,
            'wd': config.TRAIN.wd,
            'learning_rate': lr,
            'lr_scheduler': lr_scheduler,
            'rescale_grad': 1.0,
            'clip_gradient': None
        }
        if pretrained == 'xavier':
            init = mx.init.Mixed(['rot_weight|trans_weight', '.*'], [
                mx.init.Zero(),
                mx.init.Xavier(
                    rnd_type='gaussian', factor_type="in", magnitude=2)
            ])
            mod.fit(train_data,
                    eval_metric=eval_metrics,
                    epoch_end_callback=epoch_end_callback,
                    batch_end_callback=batch_end_callback,
                    kvstore=config.default.kvstore,
                    optimizer='sgd',
                    optimizer_params=optimizer_params,
                    begin_epoch=begin_epoch,
                    num_epoch=end_epoch,
                    prefix=prefix,
                    initializer=init,
                    force_init=True)
        else:
            mod.fit(train_data,
                    eval_metric=eval_metrics,
                    epoch_end_callback=epoch_end_callback,
                    batch_end_callback=batch_end_callback,
                    kvstore=config.default.kvstore,
                    optimizer='sgd',
                    optimizer_params=optimizer_params,
                    arg_params=arg_params,
                    aux_params=aux_params,
                    begin_epoch=begin_epoch,
                    num_epoch=end_epoch,
                    prefix=prefix)
예제 #4
0
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr,
              lr_step):

    logger, final_output_path, _, tensorboard_path = create_env(
        config.output_path, args.cfg, config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    print "config.symbol", config.symbol
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=True)

    # setup multi-gpu
    input_batch_size = config.TRAIN.BATCH_IMAGES * len(ctx)
    NUM_GPUS = len(ctx)

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    segdbs = [
        load_gt_segdb(config.dataset.dataset,
                      image_set,
                      config.dataset.root_path,
                      config.dataset.dataset_path,
                      result_path=final_output_path)
        for image_set in image_sets
    ]
    segdb = merge_segdb(segdbs)

    # load training data
    train_data = TrainDataLoader(sym,
                                 segdb,
                                 config,
                                 batch_size=input_batch_size,
                                 shuffle=config.TRAIN.SHUFFLE,
                                 ctx=ctx)

    # loading val data
    val_image_set = config.dataset.test_image_set
    val_root_path = config.dataset.root_path
    val_dataset = config.dataset.dataset
    val_dataset_path = config.dataset.dataset_path
    val_imdb = eval(val_dataset)(val_image_set,
                                 val_root_path,
                                 val_dataset_path,
                                 result_path=final_output_path)
    val_segdb = val_imdb.gt_segdb()

    val_data = TrainDataLoader(sym,
                               val_segdb,
                               config,
                               batch_size=input_batch_size,
                               shuffle=config.TRAIN.SHUFFLE,
                               ctx=ctx)

    # infer max shape
    max_scale = [(config.TRAIN.crop_size[0], config.TRAIN.crop_size[1])]
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3,
                                max([v[0] for v in max_scale]),
                                max([v[1] for v in max_scale])))]
    max_label_shape = [
        ('label',
         (config.TRAIN.BATCH_IMAGES, 1,
          max([v[0] for v in max_scale]) // config.network.LABEL_STRIDE,
          max([v[1] for v in max_scale]) // config.network.LABEL_STRIDE))
    ]
    max_data_shape, max_label_shape = train_data.infer_shape(
        max_data_shape, max_label_shape)
    print 'providing maximum shape', max_data_shape, max_label_shape

    # infer shape
    data_shape_dict = dict(train_data.provide_data_single +
                           train_data.provide_label_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    # load and initialize params
    if config.TRAIN.RESUME:
        print 'continue training from ', begin_epoch
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
        preload_opt_states = load_preload_opt_states(prefix, begin_epoch)
    else:
        print pretrained
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        preload_opt_states = None
        sym_instance.init_weights(config, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params,
                                        data_shape_dict)

    # create solver
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in xrange(NUM_GPUS)],
        max_label_shapes=[max_label_shape for _ in xrange(NUM_GPUS)],
        fixed_param_prefix=fixed_param_prefix)

    # metric
    imagecrossentropylossmetric = metric.ImageCrossEntropyLossMetric()
    pixcelAccMetric = metric.PixcelAccMetric()
    eval_metrics = mx.metric.CompositeEvalMetric()

    # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric
    for child_metric in [imagecrossentropylossmetric, pixcelAccMetric]:
        eval_metrics.add(child_metric)

    # callback
    batch_end_callback = [
        callback.Speedometer(train_data.batch_size, frequent=args.frequent),
        callback.TensorboardCallback(tensorboard_path, prefix="train/batch")
    ]
    epoch_end_callback = mx.callback.module_checkpoint(
        mod, prefix, period=1, save_optimizer_states=True)
    shared_tensorboard = batch_end_callback[1]

    epoch_end_metric_callback = callback.TensorboardCallback(
        tensorboard_path,
        shared_tensorboard=shared_tensorboard,
        prefix="train/epoch")
    eval_end_callback = callback.TensorboardCallback(
        tensorboard_path,
        shared_tensorboard=shared_tensorboard,
        prefix="val/epoch")
    lr_callback = callback.LrCallback(tensorboard_path,
                                      shared_tensorboard=shared_tensorboard,
                                      prefix='train/batch')

    #decide learning rate
    base_lr = lr
    lr_factor = 0.1
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(segdb) / input_batch_size) for epoch in lr_epoch_diff
    ]
    print 'lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters

    if config.TRAIN.lr_type == "MultiStage":
        lr_scheduler = LinearWarmupMultiStageScheduler(
            lr_iters,
            lr_factor,
            config.TRAIN.warmup,
            config.TRAIN.warmup_lr,
            config.TRAIN.warmup_step,
            args.frequent,
            stop_lr=lr * 0.01)
    elif config.TRAIN.lr_type == "MultiFactor":
        lr_scheduler = LinearWarmupMultiFactorScheduler(
            lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr,
            config.TRAIN.warmup_step, args.frequent)

    optimizer_params = {
        'momentum': config.TRAIN.momentum,
        'wd': config.TRAIN.wd,
        'learning_rate': lr,
        'lr_scheduler': lr_scheduler,
        'rescale_grad': 1.0,
        'clip_gradient': None
    }
    optimizer = SGD(**optimizer_params)

    freeze_layer_pattern = config.TRAIN.FIXED_PARAMS_PATTERN
    if freeze_layer_pattern.strip():
        args_lr_mult = {}
        re_prog = re.compile(freeze_layer_pattern)
        fixed_param_names = [
            name for name in sym.list_arguments() if re_prog.match(name)
        ]
        print "fixed_params_names:"
        print(fixed_param_names)
        for name in fixed_param_names:
            args_lr_mult[name] = config.TRAIN.FIXED_PARAMS_PATTERN_LR_MULT
    else:
        args_lr_mult = {}
    optimizer.set_lr_mult(args_lr_mult)

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    if not isinstance(val_data, PrefetchingIter):
        val_data = PrefetchingIter(val_data)

    if Debug:
        monitor = mx.monitor.Monitor(1)
    else:
        monitor = None

    initializer = mx.initializer.Xavier(magnitude=1, rnd_type="gaussian")
    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=config.default.kvstore,
            eval_end_callback=eval_end_callback,
            epoch_end_metric_callback=epoch_end_metric_callback,
            optimizer=optimizer,
            eval_data=val_data,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch,
            allow_missing=begin_epoch == 0,
            allow_extra=True,
            monitor=monitor,
            preload_opt_states=preload_opt_states,
            eval_data_frequency=config.TRAIN.eval_data_frequency,
            initializer=initializer)