def train_rpn(cfg, dataset, image_set, root_path, dataset_path, frequent, kvstore, flip, shuffle, resume, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, train_shared, lr, lr_step, logger=None, output_path=None): # set up logger if not logger: logging.basicConfig() logger = logging.getLogger() logger.setLevel(logging.INFO) # set up config cfg.TRAIN.BATCH_IMAGES = cfg.TRAIN.ALTERNATE.RPN_BATCH_IMAGES # load symbol sym_instance = eval(cfg.symbol + '.' + cfg.symbol)() sym = sym_instance.get_symbol_rpn(cfg, is_train=True) feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu batch_size = len(ctx) input_batch_size = cfg.TRAIN.BATCH_IMAGES * batch_size # print cfg pprint.pprint(cfg) logger.info('training rpn cfg:{}\n'.format(pprint.pformat(cfg))) # load dataset and prepare imdb for training image_sets = [iset for iset in image_set.split('+')] roidbs = [ load_gt_roidb(dataset, image_set, root_path, dataset_path, result_path=output_path, flip=flip) for image_set in image_sets ] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, cfg) # load training data train_data = AnchorLoader(feat_sym, roidb, cfg, batch_size=input_batch_size, shuffle=shuffle, ctx=ctx, feat_stride=cfg.network.RPN_FEAT_STRIDE, anchor_scales=cfg.network.ANCHOR_SCALES, anchor_ratios=cfg.network.ANCHOR_RATIOS, aspect_grouping=cfg.TRAIN.ASPECT_GROUPING) # infer max shape max_data_shape = [('data', (cfg.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in cfg.SCALES]), max([v[1] for v in cfg.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) print('providing maximum shape', max_data_shape, max_label_shape) # infer shape data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) sym_instance.infer_shape(data_shape_dict) # load and initialize params if resume: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weight_rpn(cfg, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] if train_shared: fixed_param_prefix = cfg.network.FIXED_PARAMS_SHARED else: fixed_param_prefix = cfg.network.FIXED_PARAMS mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in xrange(batch_size)], max_label_shapes=[max_label_shape for _ in xrange(batch_size)], fixed_param_prefix=fixed_param_prefix) # decide training params # metric eval_metric = metric.RPNAccMetric() cls_metric = metric.RPNLogLossMetric() bbox_metric = metric.RPNL1LossMetric() eval_metrics = mx.metric.CompositeEvalMetric() for child_metric in [eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=frequent) # epoch_end_callback = mx.callback.do_checkpoint(prefix) epoch_end_callback = mx.callback.module_checkpoint( mod, prefix, period=1, save_optimizer_states=True) # decide learning rate base_lr = lr lr_factor = cfg.TRAIN.lr_factor lr_epoch = [int(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, cfg.TRAIN.warmup, cfg.TRAIN.warmup_lr, cfg.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': cfg.TRAIN.momentum, 'wd': cfg.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(args, ctx, pretrained, pretrained_flow, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_train_symbol(config) feat_sym = sym.get_internals()['rpn_cls_score_output'] feat_conv_3x3_relu = sym.get_internals()['feat_conv_3x3_relu_output'] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [ load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets ] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = AnchorLoader(feat_sym, feat_conv_3x3_relu, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, normalize_target=config.network.NORMALIZE_RPN, bbox_mean=config.network.ANCHOR_MEANS, bbox_std=config.network.ANCHOR_STDS) # infer max shape #max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES]))), # ('data_ref', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES]))), # ('eq_flag', (1,))] data_shape1 = { 'data_ref': (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])), } _, feat_shape111, _ = feat_conv_3x3_relu.infer_shape(**data_shape1) max_data_shape = [('data_ref', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES]))), ('eq_flag', (1, )), ('motion_vector', (config.TRAIN.BATCH_IMAGES, 2, int(feat_shape111[0][2]), int(feat_shape111[0][3])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print 'providing maximum shape', max_data_shape, max_label_shape data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) #arg_params_flow, aux_params_flow = load_param(pretrained_flow, epoch, convert=True) #arg_params.update(arg_params_flow) #aux_params.update(aux_params_flow) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch) # decide training params # metric rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [ rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric ]: eval_metrics.add(child_metric) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [ mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds) ] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) print('Start to train model') # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): mx.random.seed(3) np.random.seed(3) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_pyramid_level = np.log2(config.network.RPN_FEAT_STRIDE).astype(int) feat_sym = [ sym.get_internals()['rpn_cls_score_p' + str(x) + '_output'] for x in feat_pyramid_level ] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [ load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets ] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = PyramidAnchorIterator( feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_strides=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, allowed_border=np.inf) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print 'providing maximum shape', max_data_shape, max_label_shape data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) # sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes # sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # decide training params # metric rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() rpn_fg_metric = metric.RPNFGFraction(config) eval_metric = metric.RCNNAccMetric(config) eval_fg_metric = metric.RCNNFGAccuracy(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [ rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, rpn_fg_metric, eval_fg_metric, eval_metric, cls_metric, bbox_metric ]: eval_metrics.add(child_metric) # callback # batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) # epoch_end_callback = [mx.callback.module_checkpoint(mod, prefix, period=1, # save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds)] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) net = FPNNet(sym, args_pretrained=arg_params, auxes_pretrained=aux_params) # create multi-threaded DataParallel Model. net_parallel = DataParallelModel(net, ctx_list=ctx) # create trainer, # !Important: A trainer can be only created after the function `resnet_ctx` is called. # Please Note that DataParallelModel will call reset_ctx to initialize parameters on gpus. trainer = mx.gluon.Trainer(net.collect_params(), 'sgd', optimizer_params) for epoch in range(begin_epoch, config.TRAIN.end_epoch): train_data.reset() net.hybridize(static_alloc=True, static_shape=False) progress_bar = tqdm.tqdm(total=len(roidb)) for nbatch, data_batch in enumerate(train_data): inputs = [[ x.astype('f').as_in_context(c) for x in d + l ] for c, d, l in zip(ctx, data_batch.data, data_batch.label)] with ag.record(): outputs = net_parallel(*inputs) ag.backward(sum(outputs, ())) trainer.step(1) eval_metrics.update(data_batch.label[0], outputs[0]) if nbatch % 100 == 0: msg = ','.join([ '{}={:.3f}'.format(w, v) for w, v in zip(*eval_metrics.get()) ]) msg += ",lr={}".format(trainer.learning_rate) logger.info(msg) print(msg) eval_metrics.reset() progress_bar.update(len(inputs)) progress_bar.close() net.hybridize(static_alloc=True, static_shape=False) re = ("mAP", 0.0) logger.info(re) save_path = "{}-{}-{}.params".format(prefix, epoch, re[1]) net.collect_params().save(save_path) logger.info("Saved checkpoint to {}.".format(save_path))
def train_net(args, ctx, pretrained_dir, pretrained_resnet, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) git_commit_id = commands.getoutput('git rev-parse HEAD') print("Git commit id:", git_commit_id) logger.info('Git commit id: {}'.format(git_commit_id)) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [ load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, motion_iou_path=config.dataset.motion_iou_path, flip=config.TRAIN.FLIP, use_philly=args.usePhilly) for image_set in image_sets ] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, normalize_target=config.network.NORMALIZE_RPN, bbox_mean=config.network.ANCHOR_MEANS, bbox_std=config.network.ANCHOR_STDS) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print('providing maximum shape', max_data_shape, max_label_shape) data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) # load and initialize params params_loaded = False if config.TRAIN.RESUME: arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch) print('continue training from ', begin_epoch) logger.info('continue training from ', begin_epoch) params_loaded = True elif config.TRAIN.AUTO_RESUME: for cur_epoch in range(end_epoch - 1, begin_epoch, -1): params_filename = '{}-{:04d}.params'.format(prefix, cur_epoch) states_filename = '{}-{:04d}.states'.format(prefix, cur_epoch) if os.path.exists(params_filename) and os.path.exists( states_filename): begin_epoch = cur_epoch arg_params, aux_params = load_param(prefix, cur_epoch, convert=True) mod._preload_opt_states = states_filename print('auto continue training from {}, {}'.format( params_filename, states_filename)) logger.info('auto continue training from {}, {}'.format( params_filename, states_filename)) params_loaded = True break if not params_loaded: arg_params, aux_params = load_param(os.path.join( pretrained_dir, pretrained_resnet), epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # decide training params # metric eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() for child_metric in [eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) if config.TRAIN.JOINT_TRAINING or (not config.TRAIN.LEARN_NMS): rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric]: eval_metrics.add(child_metric) if config.TRAIN.LEARN_NMS: eval_metrics.add(metric.NMSLossMetric(config, 'pos')) eval_metrics.add(metric.NMSLossMetric(config, 'neg')) eval_metrics.add(metric.NMSAccMetric(config)) # callback batch_end_callback = [ callback.Speedometer(train_data.batch_size, frequent=args.frequent) ] if config.USE_PHILLY: total_iter = (end_epoch - begin_epoch) * len(roidb) / input_batch_size progress_frequent = min(args.frequent * 10, 100) batch_end_callback.append( callback.PhillyProgressCallback(total_iter, progress_frequent)) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [ mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds) ] # decide learning rate # base_lr = lr * len(ctx) * config.TRAIN.BATCH_IMAGES base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): np.random.seed(0) mx.random.seed(0) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING) # infer max shape # max_dats_shape=['data', (1,3,600,1000)] max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] # max_data_shape=[], max_lable_shape=[] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) logger.info('providing maximum shape'+str(max_data_shape)+" "+str(max_label_shape)) data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) # add by chaojie logger.info("data_sahpe_dict:\n{}".format(pprint.pformat(data_shape_dict))) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) pprint.pprint(sym_instance.arg_shape_dict) logger.info("sym_instance.arg_shape_dict\n") logging.info(pprint.pformat(sym_instance.arg_shape_dict)) #dot = mx.viz.plot_network(sym, node_attrs={'shape': 'rect', 'fixedsize': 'false'}) #dot.render(os.path.join('./output/rcnn/network_vis', config.symbol + '_rcnn')) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states'%(prefix, begin_epoch) # decide training params # metric eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric if config.TRAIN.JOINT_TRAINING or (not config.TRAIN.LEARN_NMS): rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric]: eval_metrics.add(child_metric) for child_metric in [eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) if config.TRAIN.LEARN_NMS: eval_metrics.add(metric.NMSLossMetric(config, 'pos')) eval_metrics.add(metric.NMSLossMetric(config, 'neg')) eval_metrics.add(metric.NMSAccMetric(config)) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds)] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch] lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = {'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None} if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): mx.random.seed(3) np.random.seed(3) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) config['final_output_path'] = final_output_path # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_pyramid_level = np.log2(config.network.RPN_FEAT_STRIDE).astype(int) feat_sym = [ sym.get_internals()['rpn_cls_score_p' + str(x) + '_output'] for x in feat_pyramid_level ] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) #leonid: adding semicolumn ";" support to allow several different datasets to be merged datasets = config.dataset.dataset.split(';') image_sets = config.dataset.image_set.split(';') data_paths = config.dataset.dataset_path.split(';') if type(config.dataset.per_category_epoch_max) is str: per_category_epoch_max = [ float(x) for x in config.dataset.per_category_epoch_max.split(';') ] else: per_category_epoch_max = [float(config.dataset.per_category_epoch_max)] roidbs = [] categ_index_offs = 0 if 'classes_list_fname' not in config.dataset: classes_list_fname = '' else: classes_list_fname = config.dataset.classes_list_fname if 'num_ex_per_class' not in config.dataset: num_ex_per_class = '' else: num_ex_per_class = config.dataset.num_ex_per_class for iD, dataset in enumerate(datasets): # load dataset and prepare imdb for training image_sets_cur = [iset for iset in image_sets[iD].split('+')] for image_set in image_sets_cur: cur_roidb, cur_num_classes = load_gt_roidb( dataset, image_set, config.dataset.root_path, data_paths[iD], flip=config.TRAIN.FLIP, per_category_epoch_max=per_category_epoch_max[iD], return_num_classes=True, categ_index_offs=categ_index_offs, classes_list_fname=classes_list_fname, num_ex_per_class=num_ex_per_class) roidbs.append(cur_roidb) categ_index_offs += cur_num_classes # roidbs.extend([ # load_gt_roidb( # dataset, # image_set, # config.dataset.root_path, # data_paths[iD], # flip=config.TRAIN.FLIP, # per_category_epoch_max=per_category_epoch_max[iD]) # for image_set in image_sets]) roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = PyramidAnchorIterator( feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_strides=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, allowed_border=np.inf) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print 'providing maximum shape', max_data_shape, max_label_shape if not config.network.base_net_lock: data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) else: data_shape_dict = dict(train_data.provide_data_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) if config.TRAIN.LOAD_EMBEDDING: import cPickle with open(config.TRAIN.EMBEDDING_FNAME, 'rb') as fid: model_data = cPickle.load(fid) for fcn in ['1', '2', '3']: layer = model_data['dense_' + fcn] weight = ListList2ndarray(layer[0]) bias = mx.nd.array(layer[1]) arg_params['embed_dense_' + fcn + '_weight'] = weight arg_params['embed_dense_' + fcn + '_bias'] = bias # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS alt_fixed_param_prefix = config.network.ALT_FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] if not config.network.base_net_lock: label_names = [k[0] for k in train_data.provide_label_single] else: label_names = [] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix, alt_fixed_param_prefix=alt_fixed_param_prefix) # Leonid: Comment out the following two lines if switching to smaller number of GPUs and resuming training, then after it starts running un-comment back # if config.TRAIN.RESUME: # mod._preload_opt_states = '%s-%04d.states'%(prefix, begin_epoch) #TODO: release this. # decide training params # metric if not config.network.base_net_lock: rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() rpn_fg_metric = metric.RPNFGFraction(config) eval_metric = metric.RCNNAccMetric(config) eval_fg_metric = metric.RCNNFGAccuracy(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric if not config.network.base_net_lock: all_child_metrics = [ rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, rpn_fg_metric, eval_fg_metric, eval_metric, cls_metric, bbox_metric ] else: all_child_metrics = [ rpn_fg_metric, eval_fg_metric, eval_metric, cls_metric, bbox_metric ] # all_child_metrics = [rpn_eval_metric, rpn_bbox_metric, rpn_fg_metric, eval_fg_metric, eval_metric, cls_metric, bbox_metric] ################################################ ### added / updated by Leonid to support oneshot ################################################ if config.network.EMBEDDING_DIM != 0: if config.network.EMBED_LOSS_ENABLED: all_child_metrics += [ metric.RepresentativesMetric(config, final_output_path) ] # moved from above. JS. all_child_metrics += [metric.EmbedMetric(config)] if config.network.BG_REPS: all_child_metrics += [metric.BGModelMetric(config)] if config.network.REPS_CLS_LOSS: all_child_metrics += [metric.RepsCLSMetric(config)] if config.network.ADDITIONAL_LINEAR_CLS_LOSS: all_child_metrics += [metric.RCNNLinLogLossMetric(config)] if config.network.VAL_FILTER_REGRESS: all_child_metrics += [metric.ValRegMetric(config)] if config.network.SCORE_HIST_REGRESS: all_child_metrics += [metric.ScoreHistMetric(config)] ################################################ for child_metric in all_child_metrics: eval_metrics.add(child_metric) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [ mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds) ] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'clip_gradient': None } # if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) if args.debug == 1: import copy arg_params_ = copy.deepcopy(arg_params) aux_params_ = copy.deepcopy(aux_params) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch, config=config) if args.debug == 1: t = dictCompare(aux_params_, aux_params) t = dictCompare(arg_params_, arg_params)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [ load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets ] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print('providing maximum shape', max_data_shape, max_label_shape) data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params #if config.TRAIN.RESUME: # print('continue training from ', begin_epoch) # arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) #else: # arg_params, aux_params = load_param(pretrained, epoch, convert=True) # sym_instance.init_weight(config, arg_params, aux_params) print('transfer learning...') # Choose the initialization weights (COCO or UADETRAC or pretrained) #arg_params, aux_params = load_param('/raid10/home_ext/Deformable-ConvNets/output/rfcn_dcn_Shuo_UADTRAC/resnet_v1_101_voc0712_rfcn_dcn_Shuo_UADETRAC/trainlist_full/rfcn_UADTRAC', 5, convert=True) #arg_params, aux_params = load_param('/raid10/home_ext/Deformable-ConvNets/model/rfcn_dcn_coco', 0, convert=True) arg_params, aux_params = load_param( '/raid10/home_ext/Deformable-ConvNets/output/rfcn_dcn_Shuo_AICity/resnet_v1_101_voc0712_rfcn_dcn_Shuo_AICityVOC1080_FreezeCOCO_rpnOnly_all/1080_all/rfcn_AICityVOC1080_FreezeCOCO_rpnOnly_all', 4, convert=True) sym_instance.init_weight_Shuo(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) #freeze parameters using fixed_param_names:list of str para_file = open( '/raid10/home_ext/Deformable-ConvNets/rfcn/symbols/arg_params.txt') para_list = [line.split('<')[0] for line in para_file.readlines()] # para_list.remove('rfcn_cls_weight') # para_list.remove('rfcn_cls_bias') # para_list.remove('rfcn_cls_offset_t_weight') # para_list.remove('rfcn_cls_offset_t_bias') # para_list.remove('res5a_branch2b_offset_weight') para_list.remove('res5a_branch2b_offset_bias') para_list.remove('res5b_branch2b_offset_weight') para_list.remove('res5b_branch2b_offset_bias') para_list.remove('res5c_branch2b_offset_weight') para_list.remove('res5c_branch2b_offset_bias') para_list.remove('conv_new_1_weight') para_list.remove('conv_new_1_bias') para_list.remove('rfcn_bbox_weight') para_list.remove('rfcn_bbox_bias') para_list.remove('rfcn_bbox_offset_t_weight') para_list.remove('rfcn_bbox_offset_t_bias') mod = MutableModule_Shuo( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix, fixed_param_names=para_list) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch) # decide training params # metric rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [ rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric ]: eval_metrics.add(child_metric) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [ mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds) ] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): # 创建logger和对应的输出路径 logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) # 特征symbol,从网络sym中获取rpn_cls_score_output feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu # 使能多GPU训练,每一张卡训练一个batch batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training # 加载数据集同时准备训练的imdb,使用+分割不同的图像数据集,比如2007_trainval+2012_trainval image_sets = [iset for iset in config.dataset.image_set.split('+')] # load gt roidb加载gt roidb,根据数据集类型,图像集具体子类,数据集根目录和数据集路径,同时配置相关TRAIN为FLIP来增广数据 roidbs = [ load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets ] # 合并不同的roidb roidb = merge_roidb(roidbs) # 根据配置文件中对应的过滤规则来滤出roi roidb = filter_roidb(roidb, config) # load training data # 加载训练数据,anchor Loader为对应分类和回归的锚点加载,通过对应的roidb,查找对应的正负样本的锚点,该生成器需要参数锚点尺度,ratios和对应的feature的stride train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print('providing maximum shape', max_data_shape, max_label_shape) data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params # 加载并且初始化参数,如果训练中是继续上次的训练,也就是RESUME这一flag设置为True if config.TRAIN.RESUME: print('continue training from ', begin_epoch) # 从前缀和being_epoch中加载RESUME的arg参数和aux参数,同时需要转换为GPU NDArray arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes # 检查相关参数的shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver # 创造求解器 fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch) # decide training params # metric # 以下主要是RPN和RCNN相关的一些评价指标 rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) # mxnet中合成的评估指标,可以增加以上所有的评估指标,包括rpn_eval_metrix、rpn_cls_metric、rpn_bbox_metric和rcnn_eval_metric、rcnn_cls_metric、rcnn_bbox_metric eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [ rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric ]: eval_metrics.add(child_metric) # callback # batch后的callback回调以及epoch后的callback回调 # batch_end_callback是在训练一定batch_size后进行的相应回调,回调频率为frequent batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) # means和stds,如果BBOX是类无关的,那么means为复制means两个,否则复制数量为NUM_CLASSES means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) # epoch为一个周期结束后的回调 epoch_end_callback = [ mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds) ] # decide learning rate # 以下主要根据不同的学习率调整策略来决定学习率,这里如voc中默认的初始lr为0.0005 base_lr = lr # 学习率调整因子 lr_factor = config.TRAIN.lr_factor # 学习率调整周期,lr_step一般格式为3, 5,表示在3和5周期中进行学习率调整 lr_epoch = [float(epoch) for epoch in lr_step.split(',')] # 如果当前周期大于begin_epoch那么lr_epoch_diff为epoch-begin_epoch lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] print('lr_epoch', lr_epoch, 'begin_epoch', begin_epoch) # 通过当前的epoch来计算当前应该具有的lr lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) # learning rate调整机制,warmup multi factor scheduler预训练多因子调整器 lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer # 优化器参数,包含momentum、wd、lr、lr_scheduler、rescale_grad和clip_gradient optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): print('!!!train_data is not PrefetchingIter!!!') train_data = PrefetchingIter(train_data) # train # 模型训练过程,输入train_data,评估指标包括eval_metrics等一系列指标,每一个epoch结束后进入epoch_end_callback,每一个batch结束后进入batch_end_callback,优化器使用sgd,同时优化参数、输入参数和辅助参数以及begin周期和end周期 mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): mx.random.seed(3) np.random.seed(3) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_pyramid_level = np.log2(config.network.RPN_FEAT_STRIDE).astype(int) feat_sym = [ sym.get_internals()['rpn_cls_score_p' + str(x) + '_output'] for x in feat_pyramid_level ] print('load symbol END') # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training print('Start load dataset and prepare imdb for training') image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [ load_gt_roidb_poly(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets ] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) print('Start load training data') # load training data train_data = PyramidAnchorIterator_poly( feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_strides=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, allowed_border=np.inf) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 300, 9))) print 'providing maximum shape', max_data_shape, max_label_shape data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch) # decide training params # # metric rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() rpn_fg_metric = metric.RPNFGFraction(config) eval_fg_metric = metric.RCNNFGAccuracy(config) eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) # add Rroi loss here RCNN_proposal_fraction_metric = metric.RCNNFGFraction(config) Rroi_fg_accuracy = metric.RRoIRCNNFGAccuracy(config) Rroi_accuracy = metric.RRoIAccMetric(config) Rroi_cls_metric = metric.RRoIRCNNLogLossMetric(config) Rroi_bbox_metric = metric.RRoIRCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [ rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, rpn_fg_metric, eval_fg_metric, eval_metric, cls_metric, bbox_metric, RCNN_proposal_fraction_metric, Rroi_fg_accuracy, Rroi_accuracy, Rroi_cls_metric, Rroi_bbox_metric ]: eval_metrics.add(child_metric) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) Rroi_means = np.tile( np.array(config.TRAIN.RRoI_BBOX_MEANS), 2 if config.network.RRoI_CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) Rroi_stds = np.tile( np.array(config.TRAIN.RRoI_BBOX_STDS), 2 if config.network.RRoI_CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [ mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint_Rroi(prefix, means, stds, Rroi_means, Rroi_stds) ] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'clip_gradient': None } # if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): mx.random.seed(3) np.random.seed(3) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) dot = mx.viz.plot_network(sym) dot.render('graph/nn.gv', view=False) all_layers = sym.get_internals().list_outputs() node_file = 'graph/nodes.txt' if os.path.exists(node_file): os.remove(node_file) with open(node_file, 'a+') as f: for layer in all_layers: f.write(layer + '\n') feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] sdsdbs = [] for image_set in image_sets: if image_set == 'train2014': gt_sdsdb_file = os.path.join(config.dataset.root_path, 'cache', 'COCOMask', 'train2014', 'gt_sdsdb.pkl') if os.path.exists(gt_sdsdb_file): with open(gt_sdsdb_file, 'rb') as f: sdsdbs.append(pkl.load(f)) else: train2014_sdsdb = load_gt_sdsdb( config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, mask_size=config.MASK_SIZE, binary_thresh=config.BINARY_THRESH, result_path=final_output_path, flip=config.TRAIN.FLIP) with open(gt_sdsdb_file, 'wb') as f: pkl.dump(train2014_sdsdb, f, protocol=pkl.HIGHEST_PROTOCOL) sdsdbs.append(train2014_sdsdb) elif image_set == 'valminusminival2014': gt_sdsdb_file = os.path.join(config.dataset.root_path, 'cache', 'COCOMask', 'val2014', 'gt_sdsdb.pkl') if os.path.exists(gt_sdsdb_file): with open(gt_sdsdb_file, 'rb') as f: sdsdbs.append(pkl.load(f)) else: val2014_sdsdb = load_gt_sdsdb( config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, mask_size=config.MASK_SIZE, binary_thresh=config.BINARY_THRESH, result_path=final_output_path, flip=config.TRAIN.FLIP) with open(gt_sdsdb_file, 'wb') as f: pkl.dump(val2014_sdsdb, f, protocol=pkl.HIGHEST_PROTOCOL) sdsdbs.append(val2014_sdsdb) sdsdb = merge_roidb(sdsdbs) sdsdb = filter_roidb(sdsdb, config) # load training data train_data = AnchorLoader(feat_sym, sdsdb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, allowed_border=config.TRAIN.RPN_ALLOWED_BORDER) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max(v[1] for v in config.SCALES)))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) max_data_shape.append(('gt_masks', (config.TRAIN.BATCH_IMAGES, 100, max([v[0] for v in config.SCALES]), max(v[1] for v in config.SCALES)))) print 'providing maximum shape', max_data_shape, max_label_shape # infer shape data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) print 'data shape:' pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print 'continue training from ', begin_epoch arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in xrange(batch_size)], max_label_shapes=[max_label_shape for _ in xrange(batch_size)], fixed_param_prefix=fixed_param_prefix) # decide training metric # RPN, classification accuracy/loss, regression loss rpn_acc = metric.RPNAccMetric() rpn_cls_loss = metric.RPNLogLossMetric() rpn_bbox_loss = metric.RPNL1LossMetric() fcis_acc = metric.FCISAccMetric(config) fcis_acc_fg = metric.FCISAccFGMetric(config) fcis_cls_loss = metric.FCISLogLossMetric(config) fcis_bbox_loss = metric.FCISL1LossMetric(config) fcis_mask_loss = metric.FCISMaskLossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() for child_metric in [ rpn_acc, rpn_cls_loss, rpn_bbox_loss, fcis_acc, fcis_acc_fg, fcis_cls_loss, fcis_bbox_loss, fcis_mask_loss ]: eval_metrics.add(child_metric) batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = callback.do_checkpoint(prefix, means, stds) # print epoch, begin_epoch, end_epoch, lr_step base_lr = lr lr_factor = 0.1 lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(sdsdb) / batch_size) for epoch in lr_epoch_diff ] print 'lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # del sdsdb # a = mx.viz.plot_network(sym) # a.render('../example', view=True) # print 'prepare sds finished' mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch, batches_checkpoint=epoch_end_callback, num_batches_save_ckpt=2000)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): if config.dataset.dataset != 'JSONList': logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) shutil.copy2(args.cfg, prefix+'.yaml') else: import datetime import logging final_output_path = config.output_path prefix = prefix + '_' + datetime.datetime.now().strftime("%Y-%m-%d_%H_%M_%S") prefix = os.path.join(final_output_path, prefix) shutil.copy2(args.cfg, prefix+'.yaml') log_file = prefix + '.log' head = '%(asctime)-15s %(message)s' logging.basicConfig(filename=log_file, format=head) logger = logging.getLogger() logger.setLevel(logging.INFO) logger.info('prefix: %s' % prefix) print('prefix: %s' % prefix) # load symbol #shutil.copy2(os.path.join(curr_path, '..', 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) # setup multi-gpu batch_size = config.TRAIN.IMAGES_PER_GPU * len(ctx) # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) # load training data if config.network.MULTI_RPN: assert Fasle, 'still developing' ### num_layers = len(config.network.MULTI_RPN_STRIDES) rpn_syms = [sym.get_internals()['rpn%d_cls_score_output'% l] for l in range(num_layers)] train_data = PyramidAnchorLoader(rpn_syms, roidb, config, batch_size=batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_strides=config.network.MULTI_RPN_STRIDES, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, allowed_border=np.inf) else: feat_sym = sym.get_internals()['rpn_cls_score_output'] train_data = AnchorLoader(feat_sym, roidb, config, batch_size=batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING) # infer max shape data_shape_dict = dict(train_data.provide_data + train_data.provide_label) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS mod = MutableModule(sym, train_data.data_names, train_data.label_names, context=ctx, logger=logger, fixed_param_prefix=fixed_param_prefix) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states'%(prefix, begin_epoch) # decide training params # metric rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) if config.network.PREDICT_KEYPOINTS: kps_cls_acc = metric.KeypointAccMetric(config) kps_cls_loss = metric.KeypointLogLossMetric(config) kps_pos_loss = metric.KeypointL1LossMetric(config) eval_metrics.add(kps_cls_acc) eval_metrics.add(kps_cls_loss) eval_metrics.add(kps_pos_loss) # callback batch_end_callback = callback.Speedometer(batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [mx.callback.do_checkpoint(prefix)] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch] lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = {'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None} if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.TRAIN.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch) time.sleep(10) train_data.iters[0].terminate()
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): # 创建logger和对应的输出路径 logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) # 特征symbol,从网络sym中获取rpn_cls_score_output feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu # 使能多GPU训练,每一张卡训练一个batch batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training # 加载数据集同时准备训练的imdb,使用+分割不同的图像数据集,比如2007_trainval+2012_trainval image_sets = [iset for iset in config.dataset.image_set.split('+')] # load gt roidb加载gt roidb,根据数据集类型,图像集具体子类,数据集根目录和数据集路径,同时配置相关TRAIN为FLIP来增广数据 roidbs = [load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets] # 合并不同的roidb roidb = merge_roidb(roidbs) # 根据配置文件中对应的过滤规则来滤出roi roidb = filter_roidb(roidb, config) # load training data # 加载训练数据,anchor Loader为对应分类和回归的锚点加载,通过对应的roidb,查找对应的正负样本的锚点,该生成器需要参数锚点尺度,ratios和对应的feature的stride train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print('providing maximum shape', max_data_shape, max_label_shape) data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained, epoch, convert=True) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)], max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix) if config.TRAIN.RESUME: mod._preload_opt_states = '%s-%04d.states'%(prefix, begin_epoch) # decide training params # metric rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() eval_metric = metric.RCNNAccMetric(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) # callback batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = [mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds)] # decide learning rate base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch] lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = {'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None} if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # train mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): mx.random.seed(3) np.random.seed(3) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = detnet.detnet() sym = sym_instance.get_symbol(config, is_train=True) feat_pyramid_level = np.log2(config.network.RPN_FEAT_STRIDE).astype(int) feat_sym = [ sym.get_internals()['rpn_cls_score_p' + str(x) + '_output'] for x in feat_pyramid_level ] batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) image_sets = [iset for iset in config.dataset.image_set.split('+')] roidbs = [ load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, flip=config.TRAIN.FLIP) for image_set in image_sets ] roidb = merge_roidb(roidbs) roidb = filter_roidb(roidb, config) train_data = PyramidAnchorIterator( feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_strides=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, allowed_border=np.inf) max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([int(v[1] // 16 * 16) for v in config.SCALES])))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) print('providing maximum shape', max_data_shape, max_label_shape) data_shape_dict = dict(train_data.provide_data + train_data.provide_label) pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) if config.TRAIN.RESUME: print('continue training from ', begin_epoch) arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = None, None #sym_instance.init_weight(config, arg_params, aux_params) #sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) data_names = [k[0] for k in train_data.provide_data] label_names = [k[0] for k in train_data.provide_label] mod = mx.mod.Module(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx) rpn_eval_metric = metric.RPNAccMetric() rpn_cls_metric = metric.RPNLogLossMetric() rpn_bbox_metric = metric.RPNL1LossMetric() rpn_fg_metric = metric.RPNFGFraction(config) eval_metric = metric.RCNNAccMetric(config) eval_fg_metric = metric.RCNNFGAccuracy(config) cls_metric = metric.RCNNLogLossMetric(config) bbox_metric = metric.RCNNL1LossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() for child_metric in [ rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, rpn_fg_metric, eval_fg_metric, eval_metric, cls_metric, bbox_metric ]: eval_metrics.add(child_metric) batch_end_callback = [ mx.callback.Speedometer(train_data.batch_size, frequent=1, auto_reset=False) ] epoch_end_callback = [mx.callback.do_checkpoint(prefix, period=1)] base_lr = lr lr_factor = config.TRAIN.lr_factor lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff ] print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters) lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(step=lr_iters, factor=lr_factor) optimizer_params = { "momentum": config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'clip_gradient': None } if not isinstance(train_data, mx.io.PrefetchingIter): train_data = mx.io.PrefetchingIter(train_data) if DEBUG: train_data.reset() it = train_data.next() mod.bind(data_shapes=train_data.provide_data, label_shapes=train_data.provide_label, for_training=True, force_rebind=False) mod.init_params(arg_params=arg_params, aux_params=aux_params, allow_missing=True) mod.init_optimizer(optimizer_params=optimizer_params) eval_metrics.reset() next_data_batch = train_data.next() for i in range(100): print(i) mod.forward_backward(next_data_batch) mod.update() mod.update_metric(eval_metrics, next_data_batch.label) print(eval_metrics) mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, optimizer='sgd', optimizer_params=optimizer_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(config, output_path, logger=logging): # train_net(cfg_path, ctx, config.network.pretrained, config.network.pretrained_epoch, # config.TRAIN.model_prefix, config.TRAIN.begin_epoch, config.TRAIN.end_epoch, # config.TRAIN.lr, config.TRAIN.lr_step) # train parameters pretrained_model = config.network.pretrained epoch = config.network.pretrained_epoch prefix = config.TRAIN.model_prefix begin_epoch = config.TRAIN.begin_epoch end_epoch = config.TRAIN.end_epoch lr = config.TRAIN.lr lr_step = config.TRAIN.lr_step prefix = os.path.join(output_path, prefix) # network parameters BATCH_IMAGES = config.TRAIN.BATCH_IMAGES SCALES = config.SCALES # gpu stuff ctx = [mx.gpu(int(i)) for i in config.gpus.split(',')] # final_output_path = output_path # load symbol # shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), output_path) # sym_instance = eval(config.symbol)() network = resnet_v1_101_fcis() sym = network.get_symbol(config, is_train=True) feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu batch_size = len(ctx) input_batch_size = BATCH_IMAGES * batch_size # load dataset and prepare imdb for training cfg_ds = config.dataset ds_name = cfg_ds.dataset image_sets = [iset for iset in cfg_ds.image_set.split('+')] if ds_name.lower() == "labelme": from utils.load_data import load_labelme_gt_sdsdb sdsdbs = [ load_labelme_gt_sdsdb(image_set, cfg_ds.dataset_path, cfg_ds.root_path, flip=config.TRAIN.FLIP, mask_size=config.MASK_SIZE, binary_thresh=config.BINARY_THRESH, classes=cfg_ds.CLASSES) for image_set in image_sets ] else: sdsdbs = [ load_gt_sdsdb(ds_name, image_set, cfg_ds.root_path, cfg_ds.dataset_path, mask_size=config.MASK_SIZE, binary_thresh=config.BINARY_THRESH, result_path=output_path, flip=config.TRAIN.FLIP) for image_set in image_sets ] sdsdb = merge_roidb(sdsdbs) sdsdb = filter_roidb(sdsdb, config) # load training data train_data = AnchorLoader(feat_sym, sdsdb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, allowed_border=config.TRAIN.RPN_ALLOWED_BORDER) # infer max shape max_data_shape = [('data', (BATCH_IMAGES, 3, max([v[0] for v in SCALES]), max(v[1] for v in SCALES)))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (BATCH_IMAGES, 100, 5))) max_data_shape.append( ('gt_masks', (BATCH_IMAGES, 100, max([v[0] for v in SCALES]), max(v[1] for v in SCALES)))) print 'providing maximum shape', max_data_shape, max_label_shape # infer shape data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) print 'data shape:' pprint.pprint(data_shape_dict) network.infer_shape(data_shape_dict) # load and initialize params if config.TRAIN.RESUME: print 'continue training from ', begin_epoch arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: arg_params, aux_params = load_param(pretrained_model, epoch, convert=True) network.init_weight(config, arg_params, aux_params) # check parameter shapes network.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule( sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in xrange(batch_size)], max_label_shapes=[max_label_shape for _ in xrange(batch_size)], fixed_param_prefix=fixed_param_prefix) # decide training metric # RPN, classification accuracy/loss, regression loss rpn_acc = metric.RPNAccMetric() rpn_cls_loss = metric.RPNLogLossMetric() rpn_bbox_loss = metric.RPNL1LossMetric() fcis_acc = metric.FCISAccMetric(config) fcis_acc_fg = metric.FCISAccFGMetric(config) fcis_cls_loss = metric.FCISLogLossMetric(config) fcis_bbox_loss = metric.FCISL1LossMetric(config) fcis_mask_loss = metric.FCISMaskLossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() for child_metric in [ rpn_acc, rpn_cls_loss, rpn_bbox_loss, fcis_acc, fcis_acc_fg, fcis_cls_loss, fcis_bbox_loss, fcis_mask_loss ]: eval_metrics.add(child_metric) batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=config.default.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else cfg_ds.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else cfg_ds.NUM_CLASSES) epoch_end_callback = callback.do_checkpoint(prefix, means, stds) # print epoch, begin_epoch, end_epoch, lr_step base_lr = lr lr_factor = 0.1 lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [ epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch ] lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [ int(epoch * len(sdsdb) / batch_size) for epoch in lr_epoch_diff ] print 'lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = { 'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None } if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # del sdsdb # a = mx.viz.plot_network(sym) # a.render('../example', view=True) # print 'prepare sds finished' mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(args, ctx, pretrained_res, pretrained_vgg, epoch, prefix, begin_epoch, end_epoch, lr, lr_step): mx.random.seed(3) np.random.seed(3) logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set) prefix = os.path.join(final_output_path, prefix) # load symbol shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path) sym_instance = eval(config.symbol)() sym = sym_instance.get_symbol(config, is_train=True) feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu batch_size = len(ctx) input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size # print config pprint.pprint(config) logger.info('training config:{}\n'.format(pprint.pformat(config))) # load dataset and prepare imdb for training image_sets = [iset for iset in config.dataset.image_set.split('+')] sdsdbs = [load_gt_sdsdb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path, mask_size=config.MASK_SIZE, binary_thresh=config.BINARY_THRESH, result_path=final_output_path, flip=config.TRAIN.FLIP) for image_set in image_sets] sdsdb = merge_roidb(sdsdbs) sdsdb = filter_roidb(sdsdb, config) # load training data train_data = AnchorLoader(feat_sym, sdsdb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx, feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES, anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING, allowed_border=config.TRAIN.RPN_ALLOWED_BORDER) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max(v[1] for v in config.SCALES)))] max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape) max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5))) max_data_shape.append(('gt_masks', (config.TRAIN.BATCH_IMAGES, 100, max([v[0] for v in config.SCALES]), max(v[1] for v in config.SCALES)))) print 'providing maximum shape', max_data_shape, max_label_shape # infer shape data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single) print 'data shape:' pprint.pprint(data_shape_dict) sym_instance.infer_shape(data_shape_dict) # inshape, outshape, uaxshape = sym_instance.infer_shape(data_shape_dict) # print 'symbol inshape: %s ' % (str(inshape)) # print 'symbol outshape: %s' % (str(outshape)) ''' internals = sym.get_internals() _, out_shapes, _ = internals.infer_shape(**data_shape_dict) print(sym.list_outputs()) shape_dict = dict(zip(internals.list_outputs(), out_shapes)) pprint.pprint(shape_dict) ''' # load and initialize params if config.TRAIN.RESUME: print 'continue training from ', begin_epoch arg_params, aux_params = load_param(prefix, begin_epoch, convert=True) else: # load vgg-16 & resnet-101 parameters # pretrained_res = pretrained # pretrained_vgg = './model/pretrained_model/VGG_FC_ILSVRC_16' arg_params_res, aux_params_res = load_param(pretrained_res, epoch, convert=True) arg_params_vgg, aux_params_vgg = load_param(pretrained_vgg, epoch, convert=True) # print 'params of resnet-101' # print arg_params_res # print 'params of vgg-16' # print arg_params_vgg arg_params = dict(arg_params_res, **arg_params_vgg) aux_params = dict(aux_params_res, **aux_params_vgg) # print 'arg_params: \n %s' % (str(arg_params)) sym_instance.init_weight(config, arg_params, aux_params) # check parameter shapes sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict) # create solver fixed_param_prefix = config.network.FIXED_PARAMS data_names = [k[0] for k in train_data.provide_data_single] label_names = [k[0] for k in train_data.provide_label_single] mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in xrange(batch_size)], max_label_shapes=[max_label_shape for _ in xrange(batch_size)], fixed_param_prefix=fixed_param_prefix) # decide training metric # RPN, classification accuracy/loss, regression loss rpn_acc = metric.RPNAccMetric() rpn_cls_loss = metric.RPNLogLossMetric() rpn_bbox_loss = metric.RPNL1LossMetric() fcis_acc = metric.FCISAccMetric(config) fcis_acc_fg = metric.FCISAccFGMetric(config) fcis_cls_loss = metric.FCISLogLossMetric(config) fcis_bbox_loss = metric.FCISL1LossMetric(config) fcis_mask_loss = metric.FCISMaskLossMetric(config) eval_metrics = mx.metric.CompositeEvalMetric() # accumulate all loss, fcn-8s loss should be added here for child_metric in [rpn_acc, rpn_cls_loss, rpn_bbox_loss, # fcis_acc_fg, fcis_cls_loss, fcis_bbox_loss, fcis_mask_loss]: fcis_acc, fcis_acc_fg, fcis_cls_loss, fcis_bbox_loss, fcis_mask_loss]: eval_metrics.add(child_metric) batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent) means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES) epoch_end_callback = callback.do_checkpoint(prefix, means, stds) # print epoch, begin_epoch, end_epoch, lr_step base_lr = lr lr_factor = 0.1 lr_epoch = [float(epoch) for epoch in lr_step.split(',')] lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch] lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff))) lr_iters = [int(epoch * len(sdsdb) / batch_size) for epoch in lr_epoch_diff] print 'lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step) # optimizer optimizer_params = {'momentum': config.TRAIN.momentum, 'wd': config.TRAIN.wd, 'learning_rate': lr, 'lr_scheduler': lr_scheduler, 'rescale_grad': 1.0, 'clip_gradient': None} if not isinstance(train_data, PrefetchingIter): train_data = PrefetchingIter(train_data) # del sdsdb # a = mx.viz.plot_network(sym) # a.render('../example', view=True) # print 'prepare sds finished' mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=config.default.kvstore, optimizer='sgd', optimizer_params=optimizer_params, arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)