예제 #1
0
    def run(cls, experiment_run: ExperimentClass, author: User) -> Experiment:
        experiment, created = Experiment.objects.get_or_create(
            name=experiment_run.name, author=author)
        experiment.save()
        run = Run(uuid=experiment_run.run_id, experiment=experiment)
        run.save()

        for m in experiment_run.metrics:
            metric = Metric(name=m.name, value=m.value, run=run)
            metric.save()

        for p in experiment_run.parameters:
            parameter = Parameter(name=p.name, value=p.value, run=run)
            parameter.save()

        for m in experiment_run.measurements:
            measurement = Count(run=run)
            measurement.save()
            for entry_key, entry_value in m.value.items():
                entry = CountEntry(key=entry_key,
                                   value=entry_value,
                                   measurement=measurement)
                entry.save()

        return experiment
예제 #2
0
    def adapt_run_from_request(cls, request: dict, author: User) -> Run:
        experiment_name = request.get("name")
        experiment, created = Experiment.objects.get_or_create(
            name=experiment_name, author=author)
        experiment.save()

        run_id = request.get("run_id")
        run = Run(run_id=run_id,
                  experiment=experiment,
                  description=request.get("description", ""),
                  timestamp=request.get("timestamp", int(time.time())))
        run.save()

        for sv in request.get("state_vectors", []):
            state_vector = StateVector(name=sv.get("name"), run=run)
            state_vector.save()

            for real, img in sv.get("vector", []):
                complex_number = ComplexNumber(real=real,
                                               img=img,
                                               state_vector=state_vector)
                complex_number.save()

        for m in request.get("metrics", []):
            metric = Metric(name=m.get("name"),
                            value=m.get("value"),
                            timestamp=m.get("timestamp"),
                            run=run)
            metric.save()

        for p in request.get("parameters", []):
            parameter = Parameter(name=p.get("name"),
                                  value=p.get("value"),
                                  timestamp=p.get("timestamp"),
                                  run=run)
            parameter.save()

        for c in request.get("counts", []):
            count = Count(name=c.get("name"), run=run)
            count.save()

            for k, v in c.get("value", {}).items():
                count_entry = CountEntry(key=k, value=v, count=count)
                count_entry.save()

        return run
예제 #3
0
def _create_stubbed_experiments(
        n_experiments: int,
        n_runs: int = 2,
        n_metrics: int = 2,
        n_parameters: int = 2,
        n_measurements: int = 2,
        author: Optional[User] = None) -> List[Experiment]:
    """ Creates experiments for tests. """
    if not author:
        author, _ = User.objects.get_or_create(username="******",
                                               password="******")

    now = int(time.time())
    experiments = []
    for i in range(n_experiments):
        experiment = Experiment(name="Experiment #{}".format(i), author=author)
        experiment.save()

        for j in range(n_runs):
            run = Run(run_id="run #{}".format(j),
                      experiment=experiment,
                      timestamp=now)
            run.save()

            for m in range(n_metrics):
                metric = Metric(name="Metric {}".format(m),
                                value=0.1,
                                timestamp=now,
                                run=run)
                metric.save()

            for p in range(n_parameters):
                parameter = Parameter(name="Parameter {}".format(p),
                                      value=0.1,
                                      timestamp=now,
                                      run=run)
                parameter.save()

            for m in range(n_measurements):
                count = Count(run=run, name="counts")
                count.save()

                measurement_entry = CountEntry(key="00",
                                               value=1024,
                                               count=count)
                measurement_entry.save()

            run.save()
        experiment.save()
        experiments.append(experiment)

    return experiments
    def upload_log_zip(self, request):
        base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
        zip_root = ''
        try:
            # Access S3 bucket via the boto3 library. Credentials stored in the env file
            s3 = boto3.resource(
                's3',
                aws_access_key_id=config('AWS_ACCESS_KEY'),
                aws_secret_access_key=config('AWS_SECRET_ACCESS_KEY'))

            # Write the request bytes to destination of 'upload.zip'
            with open('upload.zip', 'wb+') as destination:
                for chunk in request.FILES['file'].chunks():
                    destination.write(chunk)

            # Open and begin processing the uploaded files
            with ZipFile('upload.zip', 'r') as upload:

                # Extract the zip file to access the files
                upload.extractall()

                # The log files will be under a common 'root' directory
                zip_root = upload.namelist()[0]

                # Walk through the upper most directory
                for root, directories, files in os.walk(
                        os.path.join(base_dir, '../' + zip_root)):
                    for directory in directories:
                        # At this point, dir_root contains the path of zip root and directory
                        for dir_root, dirs, dir_files in os.walk(
                                os.path.join(base_dir,
                                             '../' + zip_root + directory)):
                            # Iterate through each file in the zip files
                            for dir_file in dir_files:
                                # We are only interested in processing and storing the moos, alog, and script files
                                # We want to store raw versions of these types of files in the S3 bucket

                                if '._moos' in dir_file:
                                    # Store raw file in S3
                                    # Open the file as binary data
                                    with open(
                                            os.path.join(
                                                base_dir,
                                                dir_root + '/' + dir_file),
                                            'rb') as file_data:
                                        # Place the file in the bucket
                                        s3.Bucket(
                                            'swarm-logs-bucket').put_object(
                                                Key='{}{}{}'.format(
                                                    zip_root, directory + '/',
                                                    dir_file),
                                                Body=file_data)

                                # If the file is .alog it needs to be parsed into json and stored in the db
                                if '.alog' in dir_file:

                                    # Store in S3 bucket
                                    with open(
                                            os.path.join(
                                                base_dir,
                                                dir_root + '/' + dir_file),
                                            'rb') as file_data:

                                        # Place the un-parsed file in the bucket
                                        s3.Bucket(
                                            'swarm-logs-bucket').put_object(
                                                Key='{}{}{}'.format(
                                                    zip_root, directory + '/',
                                                    dir_file),
                                                Body=file_data)

                                        # Parse into json
                                        # Web parser return json objects that contain metadata for the log and run objects
                                        # Basically only what you need to put in the database, and enough to get the files on the S3
                                        json_obj, runs_obj = parsers.web_parser(
                                            os.path.join(
                                                base_dir,
                                                dir_root + '/' + dir_file))
                                        index_json_obj = json.loads(json_obj)
                                        index_runs = json.loads(runs_obj)

                                        # Create pieces of objects to store them in the DB
                                        device_id = index_json_obj['device_id']
                                        file_path = zip_root + directory + '/' + dir_file + '.json'
                                        # print(file_path)
                                        date = index_json_obj['date']
                                        time = index_json_obj['time']

                                        # TODO specify timezone
                                        date_time = datetime.strptime(
                                            date + ' ' + time,
                                            '%d-%m-%Y %H:%M:%S')

                                        # Create the log object first, so it can be used in the run objects
                                        log_obj = Log(dateTime=date_time,
                                                      deviceID=device_id,
                                                      filePath=file_path)
                                        log_obj.save()

                                        # Iterate through the returned runs and store each in the DB
                                        for i in index_runs:
                                            run_id = i['run_id']

                                            # This is the filepath the will be on the bucket
                                            run_fp = zip_root + directory + '/' + dir_file + f'-run{run_id}.json'

                                            # Save the run data to db
                                            run_obj = Run(dateTime=date_time,
                                                          deviceID=device_id,
                                                          runID=run_id,
                                                          logID=log_obj,
                                                          filePath=run_fp)
                                            run_obj.save()

                                            run_file_path = os.path.join(
                                                base_dir,
                                                dir_root + '/' + dir_file +
                                                f'-run{run_id}.json')

                                            # Upload run json to bucket
                                            with open(run_file_path,
                                                      'rb') as run_file:
                                                s3.Bucket(
                                                    'swarm-logs-bucket'
                                                ).put_object(
                                                    Key='{}{}{}'.format(
                                                        zip_root,
                                                        directory + '/',
                                                        run_file.name.split(
                                                            '/')[-1]),
                                                    Body=run_file)

                                            # Upload the script files to the bucket
                                            if 'Narwhal' in run_file_path:
                                                run_script_path = run_file_path.replace(
                                                    '.json', '') + '.script'
                                                with open(
                                                        run_script_path,
                                                        'rb') as script_file:
                                                    s3.Bucket(
                                                        'swarm-logs-bucket'
                                                    ).put_object(
                                                        Key='{}{}{}'.format(
                                                            zip_root,
                                                            directory + '/',
                                                            script_file.name.
                                                            split('/')[-1]),
                                                        Body=script_file)
                                                    script_file.seek(0)
                                                    s3.Bucket(
                                                        'swarm-robotics-visualization'
                                                    ).put_object(
                                                        Key='scripts/{}{}{}'.
                                                        format(
                                                            zip_root,
                                                            directory + '/',
                                                            script_file.name.
                                                            split('/')[-1]),
                                                        Body=script_file)
                                    # Open and place the parsed json file in the bucket
                                    with open(
                                            os.path.join(
                                                base_dir, dir_root + '/' +
                                                dir_file + '.json'),
                                            'rb') as json_file:
                                        s3.Bucket(
                                            'swarm-logs-bucket').put_object(
                                                Key='{}{}{}'.format(
                                                    zip_root, directory + '/',
                                                    json_file.name.split('/')
                                                    [-1]),
                                                Body=json_file)
        except Exception as e:
            return Response({"Status": "Upload Failed. {}".format(e)},
                            status=status.HTTP_500_INTERNAL_SERVER_ERROR)
        else:
            # Return the 200 response
            return Response({"Status": "Uploaded Successfully."},
                            status=status.HTTP_200_OK)
        finally:
            # Clean up the files and directories that get created
            try:
                os.remove(os.path.join(base_dir, '../upload.zip'))
            except OSError as error:
                print('Error removing upload.zip \n' + error)
            if zip_root != '':
                shutil.rmtree(os.path.join(base_dir, '../' + zip_root))

            # Walk the directory above to make sure the __MACOSX directory gets deleted if it is created
            for root, directories, files in os.walk(
                    os.path.join(base_dir, '../')):
                if '__MACOSX' in directories:
                    shutil.rmtree(os.path.join(base_dir, '../__MACOSX'))
                    break