def _eval_nseries(self, x, n): from sympy import powsimp, collect, exp, log, O, ceiling b, e = self.args if e.is_Integer: if e > 0: # positive integer powers are easy to expand, e.g.: # sin(x)**4 = (x-x**3/3+...)**4 = ... return Pow(b._eval_nseries(x, n=n), e)._eval_expand_multinomial(deep=False) elif e is S.NegativeOne: # this is also easy to expand using the formula: # 1/(1 + x) = 1 + x + x**2 + x**3 ... # so we need to rewrite base to the form "1+x" if b.has(log(x)): # we need to handle the log(x) singularity: y = Dummy("y") p = self.subs(log(x), -1 / y) if not p.has(x): p = p._eval_nseries(y, n=n) p = p.subs(y, -1 / log(x)) return p b = b._eval_nseries(x, n=n) if b.has(log(x)): # we need to handle the log(x) singularity: y = Dummy("y") self0 = 1 / b p = self0.subs(log(x), -1 / y) if not p.has(x): p = p._eval_nseries(y, n=n) p = p.subs(y, -1 / log(x)) return p prefactor = b.as_leading_term(x) # express "rest" as: rest = 1 + k*x**l + ... + O(x**n) rest = ((b - prefactor) / prefactor)._eval_expand_mul() if rest == 0: # if prefactor == w**4 + x**2*w**4 + 2*x*w**4, we need to # factor the w**4 out using collect: return 1 / collect(prefactor, x) if rest.is_Order: return (1 + rest) / prefactor n2 = rest.getn() if n2 is not None: n = n2 term2 = collect(rest.as_leading_term(x), x) k, l = C.Wild("k"), C.Wild("l") r = term2.match(k * x**l) # if term2 is NaN then r will not contain l k = r.get(k, S.One) l = r.get(l, S.Zero) if l.is_Rational and l > 0: pass elif l.is_number and l > 0: l = l.evalf() else: raise NotImplementedError() terms = [1 / prefactor] for m in xrange(1, ceiling(n / l)): new_term = terms[-1] * (-rest) if new_term.is_Pow: new_term = new_term._eval_expand_multinomial( deep=False) else: new_term = new_term._eval_expand_mul(deep=False) terms.append(new_term) if n2 is None: # Append O(...) because it is not included in "r" terms.append(O(x**n)) return powsimp(Add(*terms), deep=True, combine='exp') else: # negative powers are rewritten to the cases above, for example: # sin(x)**(-4) = 1/( sin(x)**4) = ... # and expand the denominator: denominator = (b**(-e))._eval_nseries(x, n=n) if 1 / denominator == self: return self # now we have a type 1/f(x), that we know how to expand return (1 / denominator)._eval_nseries(x, n=n) if e.has(x): return exp(e * log(b))._eval_nseries(x, n=n) if b == x: return powsimp(self, deep=True, combine='exp') # work for b(x)**e where e is not an Integer and does not contain x # and hopefully has no other symbols def e2int(e): """return the integer value (if possible) of e and a flag indicating whether it is bounded or not.""" n = e.limit(x, 0) unbounded = n.is_unbounded if not unbounded: # XXX was int or floor intended? int used to behave like floor # so int(-Rational(1, 2)) returned -1 rather than int's 0 try: n = int(n) except TypeError: #well, the n is something more complicated (like 1+log(2)) try: n = int(n.evalf()) + 1 # XXX why is 1 being added? except TypeError: pass # hope that base allows this to be resolved n = _sympify(n) if n.is_Integer: assert n.is_nonnegative return n, unbounded order = O(x**n, x) ei, unbounded = e2int(e) b0 = b.limit(x, 0) if unbounded and (b0 is S.One or b0.has(Symbol)): # XXX what order if b0 is S.One: resid = (b - 1) if resid.is_positive: return S.Infinity elif resid.is_negative: return S.Zero raise ValueError('cannot determine sign of %s' % resid) return b0**ei if (b0 is S.Zero or b0.is_unbounded): if unbounded is not False: return b0**e # XXX what order if not ei.is_number: # if not, how will we proceed? raise ValueError('expecting numerical exponent but got %s' % ei) nuse = n - ei lt = b.as_leading_term(x) # XXX o is not used -- was this to be used as o and o2 below to compute a new e? o = order * lt**(1 - e) bs = b._eval_nseries(x, n=nuse) if bs.is_Add: bs = bs.removeO() if bs.is_Add: # bs -> lt + rest -> lt*(1 + (bs/lt - 1)) return ((Pow(lt, e) * Pow( (bs / lt).expand(), e).nseries(x, n=nuse)).expand() + order) return bs**e + order # either b0 is bounded but neither 1 nor 0 or e is unbounded # b -> b0 + (b-b0) -> b0 * (1 + (b/b0-1)) o2 = order * (b0**-e) z = (b / b0 - 1) o = O(z, x) #r = self._compute_oseries3(z, o2, self.taylor_term) if o is S.Zero or o2 is S.Zero: unbounded = True else: if o.expr.is_number: e2 = log(o2.expr * x) / log(x) else: e2 = log(o2.expr) / log(o.expr) n, unbounded = e2int(e2) if unbounded: # requested accuracy gives infinite series, # order is probably nonpolynomial e.g. O(exp(-1/x), x). r = 1 + z else: l = [] g = None for i in xrange(n + 2): g = self.taylor_term(i, z, g) g = g.nseries(x, n=n) l.append(g) r = Add(*l) return r * b0**e + order
def do_integral(expr, prec, options): func = expr.args[0] x, xlow, xhigh = expr.args[1] orig = mp.prec oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC) options['maxprec'] = min(oldmaxprec, 2 * prec) try: mp.prec = prec + 5 xlow = as_mpmath(xlow, prec + 15, options) xhigh = as_mpmath(xhigh, prec + 15, options) # Integration is like summation, and we can phone home from # the integrand function to update accuracy summation style # Note that this accuracy is inaccurate, since it fails # to account for the variable quadrature weights, # but it is better than nothing have_part = [False, False] max_real_term = [MINUS_INF] max_imag_term = [MINUS_INF] def f(t): re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}}) have_part[0] = re or have_part[0] have_part[1] = im or have_part[1] max_real_term[0] = max(max_real_term[0], fastlog(re)) max_imag_term[0] = max(max_imag_term[0], fastlog(im)) if im: return mpc(re or fzero, im) return mpf(re or fzero) if options.get('quad') == 'osc': A = C.Wild('A', exclude=[x]) B = C.Wild('B', exclude=[x]) D = C.Wild('D') m = func.match(C.cos(A * x + B) * D) if not m: m = func.match(C.sin(A * x + B) * D) if not m: raise ValueError( "An integrand of the form sin(A*x+B)*f(x) " "or cos(A*x+B)*f(x) is required for oscillatory quadrature" ) period = as_mpmath(2 * S.Pi / m[A], prec + 15, options) result = quadosc(f, [xlow, xhigh], period=period) # XXX: quadosc does not do error detection yet quadrature_error = MINUS_INF else: result, quadrature_error = quadts(f, [xlow, xhigh], error=1) quadrature_error = fastlog(quadrature_error._mpf_) finally: options['maxprec'] = oldmaxprec mp.prec = orig if have_part[0]: re = result.real._mpf_ if re == fzero: re = mpf_shift(fone, min(-prec, -max_real_term[0], -quadrature_error)) re_acc = -1 else: re_acc = -max(max_real_term[0] - fastlog(re) - prec, quadrature_error) else: re, re_acc = None, None if have_part[1]: im = result.imag._mpf_ if im == fzero: im = mpf_shift(fone, min(-prec, -max_imag_term[0], -quadrature_error)) im_acc = -1 else: im_acc = -max(max_imag_term[0] - fastlog(im) - prec, quadrature_error) else: im, im_acc = None, None result = re, im, re_acc, im_acc return result