train_dataset = AmbiLocalFeatDataset( iccv_res_dir=iccv_res_dir, image_dir=cambridge_img_dir, lmdb_paths=lmdb_img_cache, dataset_list=dataset_list, downsample_scale=0.5, sampling_num=30, sample_res_cache='/mnt/Exp_5/AmbiguousData_pg/temp_cache.bin', sub_graph_nodes=24) # set train parameters train_params = TrainParameters() train_params.MAX_EPOCHS = 20 train_params.START_LR = 1.0e-4 train_params.DEV_IDS = [0, 1] train_params.LOADER_BATCH_SIZE = 1 train_params.LOADER_NUM_THREADS = 0 train_params.VALID_STEPS = 5000 train_params.MAX_VALID_BATCHES_NUM = 20 train_params.CHECKPOINT_STEPS = 6000 train_params.VERBOSE_MODE = True train_params.NAME_TAG = 'test_gat_cluster' box = LocalGlobalGATTrainBox(train_params=train_params, ckpt_path_dict=checkpoint_dict) train_loader = dataloader.DataLoader(train_dataset, batch_size=1, shuffle=False, pin_memory=True,
filter_edges_by_weight = False # filter edges by weight, use only for # large-scale graphs if GPU memory is limited selected_topk = 50 # select top-k for MSP max_init_itr = 10 # max optimization iterations for initial pose # (forward, backward MSP using Adam) max_final_itr = 10 # max optimization iterations for final pose # (forward, backward MSP + FineNet using Adam) """ Load pre-trained model --------------------------------------------------------------------------------------------- """ train_params = TrainParameters() train_params.DEV_IDS = [args.gpu_id, args.gpu_id] train_params.VERBOSE_MODE = False box = LocalGlobalVLADTrainBox(train_params=train_params, top_k=20, ckpt_path_dict={ 'vlad': './models/netvlad_vgg16.tar', 'ckpt': "./models/yfcc_80nodes.pth.tar" }) box._prepare_eval() """ Dataset ------------------------------------------------------------------------------------------------------------ """ test_dataset_json = args.dataset test_dataset = make_dataset(test_dataset_json, load_img=False, load_node_edge_feat=True) dataloader = DataLoader(test_dataset, batch_size=1, num_workers=0, shuffle=True)