예제 #1
0
SEED = 285139

# feat_cols = ["close", "volume", "amount"]
FEAT_COLS = ["close"]

# pylint: disable-msg=E0601,E1101

if __name__ == '__main__':

    np.random.seed(SEED)

    regressor = dnc_regressor.DNC_Model(
        controller_units=CONTROLLER_UNITS,
        memory_size=MEMORY_SIZE,
        word_size=WORD_SIZE,
        num_read_heads=NUM_READ_HEADS,
        time_step=MAX_STEP,
        feat_size=len(FEAT_COLS) * 2 * (TIME_SHIFT + 1),
        dropout_rate=DROPOUT_RATE,
        decayed_dropout_start=DECAYED_DROPOUT_START,
        dropout_decay_steps=DROPOUT_DECAY_STEPS,
        learning_rate=LEARNING_RATE,
        decayed_lr_start=DECAYED_LR_START,
        lr_decay_steps=LR_DECAY_STEPS)

    run("test18_dnc",
        regressor,
        max_step=MAX_STEP,
        time_shift=TIME_SHIFT,
        feat_cols=FEAT_COLS)
예제 #2
0
    np.random.seed(SEED)

    regressor = dnc_regressor.DNC_Model_V4(
        num_dnc_layers = NUM_DNC_LAYERS,
        num_fcn_layers = NUM_FCN_LAYERS,
        output_size=DNC_OUTPUT_SIZE,
        controller_units=CONTROLLER_UNITS, memory_size=MEMORY_SIZE,
        word_size=WORD_SIZE, num_read_heads=NUM_READ_HEADS,
        time_step=MAX_STEP,
        feat_size=len(FEAT_COLS) * 2 * (TIME_SHIFT + 1),
        dropout_rate=DROPOUT_RATE,
        decayed_dropout_start=DECAYED_DROPOUT_START,
        dropout_decay_steps=DROPOUT_DECAY_STEPS,
        learning_rate=LEARNING_RATE,
        decayed_lr_start=DECAYED_LR_START,
        lr_decay_steps=LR_DECAY_STEPS,
        clipvalue=CLIP_VALUE
    )
    
    run(
        id="test23_mdnc",
        regressor=regressor, 
        max_step=MAX_STEP, 
        time_shift=TIME_SHIFT, 
        feat_cols=FEAT_COLS,
        val_save_freq=VAL_SAVE_FREQ,
        steps_per_epoch=STEPS_PER_EPOCH,
        include_seqlens=False,
    )
예제 #3
0
        "layer_norm": True,
        "activation": 'tanh',
        'cell_type': 'clstm',
        'connect': 'sparse',
    }

    memory_unit_config = {
        "cell_type": 'cbmu',
        "memory_length": 64,
        "memory_width": 32,
        "read_heads": 4,
        "write_heads": 2,
        "dnc_norm": True,
        "bypass_dropout": False,
        "wgate1": False,
    }

    regressor = dnc.MANN_Model(controller_config,
                               memory_unit_config,
                               time_step=MAX_STEP,
                               feat_size=len(feat_cols) * 2 * (TIME_SHIFT + 1),
                               dropout_rate=DROPOUT_RATE,
                               decayed_dropout_start=DECAYED_DROPOUT_START,
                               dropout_decay_steps=DROPOUT_DECAY_STEPS,
                               learning_rate=LEARNING_RATE,
                               decayed_lr_start=DECAYED_LR_START,
                               lr_decay_steps=LR_DECAY_STEPS,
                               seed=SEED)

    run(regressor)