SEED = 285139 # feat_cols = ["close", "volume", "amount"] FEAT_COLS = ["close"] # pylint: disable-msg=E0601,E1101 if __name__ == '__main__': np.random.seed(SEED) regressor = dnc_regressor.DNC_Model( controller_units=CONTROLLER_UNITS, memory_size=MEMORY_SIZE, word_size=WORD_SIZE, num_read_heads=NUM_READ_HEADS, time_step=MAX_STEP, feat_size=len(FEAT_COLS) * 2 * (TIME_SHIFT + 1), dropout_rate=DROPOUT_RATE, decayed_dropout_start=DECAYED_DROPOUT_START, dropout_decay_steps=DROPOUT_DECAY_STEPS, learning_rate=LEARNING_RATE, decayed_lr_start=DECAYED_LR_START, lr_decay_steps=LR_DECAY_STEPS) run("test18_dnc", regressor, max_step=MAX_STEP, time_shift=TIME_SHIFT, feat_cols=FEAT_COLS)
np.random.seed(SEED) regressor = dnc_regressor.DNC_Model_V4( num_dnc_layers = NUM_DNC_LAYERS, num_fcn_layers = NUM_FCN_LAYERS, output_size=DNC_OUTPUT_SIZE, controller_units=CONTROLLER_UNITS, memory_size=MEMORY_SIZE, word_size=WORD_SIZE, num_read_heads=NUM_READ_HEADS, time_step=MAX_STEP, feat_size=len(FEAT_COLS) * 2 * (TIME_SHIFT + 1), dropout_rate=DROPOUT_RATE, decayed_dropout_start=DECAYED_DROPOUT_START, dropout_decay_steps=DROPOUT_DECAY_STEPS, learning_rate=LEARNING_RATE, decayed_lr_start=DECAYED_LR_START, lr_decay_steps=LR_DECAY_STEPS, clipvalue=CLIP_VALUE ) run( id="test23_mdnc", regressor=regressor, max_step=MAX_STEP, time_shift=TIME_SHIFT, feat_cols=FEAT_COLS, val_save_freq=VAL_SAVE_FREQ, steps_per_epoch=STEPS_PER_EPOCH, include_seqlens=False, )
"layer_norm": True, "activation": 'tanh', 'cell_type': 'clstm', 'connect': 'sparse', } memory_unit_config = { "cell_type": 'cbmu', "memory_length": 64, "memory_width": 32, "read_heads": 4, "write_heads": 2, "dnc_norm": True, "bypass_dropout": False, "wgate1": False, } regressor = dnc.MANN_Model(controller_config, memory_unit_config, time_step=MAX_STEP, feat_size=len(feat_cols) * 2 * (TIME_SHIFT + 1), dropout_rate=DROPOUT_RATE, decayed_dropout_start=DECAYED_DROPOUT_START, dropout_decay_steps=DROPOUT_DECAY_STEPS, learning_rate=LEARNING_RATE, decayed_lr_start=DECAYED_LR_START, lr_decay_steps=LR_DECAY_STEPS, seed=SEED) run(regressor)