from cortex_class import cortex # import test data path = r"training_sets\AND.txt" # set up a cortex cort = cortex('cortex_1') cort.import_training(path) cort.populate(0) # 0 hidden layer neurons cort.min_acc = 1.0 cort.t_function("Threshold", cort.output_neurons) #train the cortex cort.train(100, 50, 10000) cort.print_training_accuracy_report() cort.interogate()
from cortex_class import cortex # set up a cortex input_path = r"training_sets\XNOR_XOR_AND_OR_NOR_NAND.txt" cort = cortex('cortex_1') num_hidden = 4 min_acc = 1.0 cort.import_training(input_path) cort.normalize_training(0, 1) cort.populate(num_hidden) cort.min_acc = min_acc cort.t_function("Threshold", cort.output_neurons) # make sure even after export and re-import, the cortex can still train cort.export_state('initial_state.txt') cort.import_state('initial_state.txt') #train the cortex incriment = 100 stabilize = 500 maximum = 10000 cort.train(incriment, stabilize, maximum) cort.print_training_accuracy_report() cort.export_state('final_state.txt')
from cortex_class import cortex cortex_path = "cortexes\All_logic_gates_cortex9.txt" cort = cortex("cort1") cort.import_state(cortex_path) cort.interogate()