예제 #1
0
def remove_cosmics(sci_file, prefix='c'):
    path = os.path.dirname(sci_file)
    if len(path) > 0:
        path += "/"
    base = os.path.basename(sci_file)

    new_sci_file = path + prefix + base
    new_err_file = path + 'e.' + prefix + base

    array, header = cosmics.fromfits(sci_file)
    e_array, e_header = cosmics.fromfits(path + 'e.' + base)

    # split in half so can use individual readnoise
    array_l, array_u = np.split(array, 2, 1)

    readnoise_u = 1.0
    readnoise_l = 1.0
    try: # average read noise
        readnoise_u = float(header['RDNOISEU'])
        readnoise_l = float(header['RDNOISEL'])
    except:
        pass

    # Build the object :
    # There are other options, check the manual...
    # sigclip --- want sharp edge; noise is around 10, sources pretty much never above 120-140, so 20x on noise is safe
    # sigfrac -- pixels neighboring cosmics ... because sigclip is high and cosmics can be hot (10K+) this needs to be small
    # objlim -- needs to be small, real sources very faint vs cosmics (this is a contrast between cosmics and source)
    cu = cosmics.cosmicsimage(array_u, gain=1.0, readnoise=readnoise_u, sigclip=25.0, sigfrac=0.001, objlim=0.001, satlevel=-1.0)
    cl = cosmics.cosmicsimage(array_l, gain=1.0, readnoise=readnoise_l, sigclip=25.0, sigfrac=0.001, objlim=0.001, satlevel=-1.0)

    # Run the removal
    # note: sometimes get warnings about invalid values encountered. This appears due to NaN in the fits error files (noise)
    cu.run(maxiter=4)
    cl.run(maxiter=4)

    # recombine arrays
    # use the mask to make our edits
    c = np.where(cl.mask == True)
    for x, y in zip(c[0], c[1]):
        array[x][y] = 0.0
        e_array[x][y] = -1.0

    x_off,y_off = array_u.shape
    c = np.where(cu.mask == True)
    for x, y in zip(c[0], c[1]):
        array[x][y+y_off] = 0.0
        e_array[x][y+y_off] = -1.0

    # Write the cleaned image into a new FITS file, conserving the original header :
    header['HISTORY']='removed cosmics (LACosmics)'
    e_header['HISTORY'] = 'removed cosmics (LACosmics)'

    cosmics.tofits(new_sci_file, array, header)
    cosmics.tofits(new_err_file, e_array, e_header)

    return
예제 #2
0
def clean_cosmics(fits_in, fits_clean, fits_mask, gain, readnoise, sigclip,
                  sigfrac, objlim, maxiter, satlevel, verbose):

    t = time.time()
    print '\nexecuting clean_cosmics ...'

    # Read the FITS :
    array, header = cosmics.fromfits(fits_in)
    # array is a 2D numpy array

    # Build the object :
    result = cosmics.cosmicsimage(array,
                                  gain=gain,
                                  readnoise=readnoise,
                                  sigclip=sigclip,
                                  sigfrac=sigfrac,
                                  objlim=objlim,
                                  satlevel=satlevel,
                                  verbose=verbose)

    # Run the full artillery :
    result.run(maxiter=maxiter)

    # Write the cleaned and mask image to FITS files, conserving the original header:
    cosmics.tofits(fits_clean, result.cleanarray, header)
    cosmics.tofits(fits_mask, result.mask, header)

    if timing: print 'wall-time spent in clean_cosmics', time.time() - t

    return result.cleanarray
예제 #3
0
파일: rcred.py 프로젝트: scizen9/kpy
def clean_cosmic(f):
    '''
    From lacosmic.
    '''
    import cosmics
    
    out = f.replace('.fits',  '_clean.fits')
    
    #If it does already exist, just return the name.
    if (os.path.isfile(out)):
        return out
    
    #Otherwise, run the cosmic ray rejection based on LA Cosmic.
    g = fitsutils.get_par(f, "GAIN")
    if (fitsutils.has_par(f, "RDNOISE")):
        rn = fitsutils.get_par(f, "RDNOISE")
    else:
        rn = 20
    array, header = cosmics.fromfits(f)
    
    try:
        c = cosmics.cosmicsimage(array, gain=g, readnoise=rn, sigclip = 8.0, sigfrac = 0.3, satlevel = 64000.0)
        c.run(maxiter = 3)
        out = f.replace('.fits',  '_clean.fits')
    
        cosmics.tofits(out, c.cleanarray, header)
        fitsutils.update_par(out, "CRREJ", 1)

        #os.remove(f)
    except:
        pass
    
    return out
예제 #4
0
def cosmicray_removal(textlist_cosmic, clip_section, prefix_str='c'):
    """
    Corrects for cosmic rays in the OBJECT image after clipping based on the string 'clip_section'
    Args:
        textlist_cosmic : Text list containing names of FITS file to be corrected for Cosmic rays
        clip_section    : String list containing the section of the FITS file to be copied
        prefix_str      : Prefix to distinguish the aligned FITS file from the original FITS file
    Returns:
        None
    """
    imcopy_clip(textlist_clip=textlist_cosmic,
                clip_section=clip_section,
                prefix_str='')
    list_cosmic = text_list_to_python_list(textlist_cosmic)

    for file_name in list_cosmic:
        input_array, input_header = cs.fromfits(file_name)
        input_object = cs.cosmicsimage(input_array,
                                       gain=float(ccd_gain),
                                       readnoise=float(read_noise),
                                       sigclip=15.0,
                                       sigfrac=0.5,
                                       objlim=5.0,
                                       satlevel=int(data_max),
                                       verbose=False)
        input_object.run(maxiter=2, verbose=False)

        output_filename = prefix_str + file_name
        remove_file(output_filename)
        cs.tofits(outfilename=output_filename,
                  pixelarray=input_object.cleanarray,
                  hdr=input_header)
예제 #5
0
def clean_cosmicrays( image, params ):

    imdat, imhead = cosmics.fromfits(image, verbose=False)

    # DEFAULT HEADER PARAMETERS FOR VIRUS-P AS OF 2012
    try: gain = imhead['GAIN1']
    except: gain = 2.0
    try: rdnoise = imhead['RDNOISE1']
    except: rdnoise = 2.5

    c = cosmics.cosmicsimage( imdat, gain=gain, readnoise=rdnoise, \
                              sigclip=5., sigfrac=0.3, objlim=5.0 )
    c.run( maxiter=4 )

    cosmics.tofits(image[:-5]+'c.fits', c.cleanarray, imhead)
    cosmics.tofits(image[:-5]+'_mask.fits', c.mask, imhead)
예제 #6
0
def cosmicsClean(inFile,
                 outFile,
                 mask="yes",
                 Gain=2.2,
                 Readnoise=10.0,
                 Sigclip=5.0,
                 Sigfrac=0.3,
                 Objlim=5.0):
    try:
        print(
            "MASK=%s, GAIN=%s, READNOISE=%s, SIGCLIP=%s, SIGFRAG=%s, OBJLIM=%s"
            % (mask, Gain, Readnoise, Sigclip, Sigfrac, Objlim))
        fp, fn = os.path.split(outFile)
        fn = fn.split(".")[0]
        # Thanks for cosmics.py to Malte Tewes (mtewes (at) astro.uni-bonn.de), http://obswww.unige.ch/people/malte.tewes/cosmics_dot_py/
        # Read the FITS :
        array, header = cosmics.fromfits(inFile)
        # array is a 2D numpy array

        # Build the object :
        c = cosmics.cosmicsimage(array,
                                 gain=Gain,
                                 readnoise=Readnoise,
                                 sigclip=Sigclip,
                                 sigfrac=Sigfrac,
                                 objlim=Objlim)
        # There are other options, check the manual...

        # Run the full artillery :
        c.run(maxiter=4)

        # Write the cleaned image into a new FITS file, conserving the original header :
        cosmics.tofits(outFile, c.cleanarray, header)

        # If you want the mask, here it is :
        if mask == "yes":
            print("%s/%s_mask.fit" % (fp, fn))
            cosmics.tofits("%s/%s_mask.fit" % (fp, fn), c.mask, header)
            # (c.mask is a boolean numpy array, that gets converted here to an integer array)
        print("cosmicsClean succeed.")
        return True
    except:
        print("cosmicsClean failed.")
        return False
예제 #7
0
    def cleanCosmics(self):

        if self.ui.listWidget.count() != 0:
            it = 0
            self.ui.progressBar.setProperty("value", 0)
            odir = QtGui.QFileDialog.getExistingDirectory(
                self, 'Select Directory to Save PNG File(s)')
            if os.path.exists(odir):
                for x in xrange(self.ui.listWidget.count()):
                    it = it + 1
                    image = self.ui.listWidget.item(x)
                    filename = ntpath.basename(image.text())
                    basename, extension = os.path.splitext(filename)

                    # Read the FITS :
                    array, header = cosmics.fromfits(image.text())
                    # array is a 2D numpy array

                    # Build the object :
                    c = cosmics.cosmicsimage(array,
                                             gain=2.2,
                                             readnoise=10.0,
                                             sigclip=5.0,
                                             sigfrac=0.3,
                                             objlim=5.0)
                    # There are other options, check the manual...

                    # Run the full artillery :
                    c.run(maxiter=4)

                    # Write the cleaned image into a new FITS file, conserving the original header :
                    cosmics.tofits("%s/%s_clean.fits" % (odir, basename),
                                   c.cleanarray, header)

                    if self.ui.checkBox.isChecked():
                        # If you want the mask, here it is :
                        cosmics.tofits("%s/%s_mask.fits" % (odir, basename),
                                       c.mask, header)
                        # (c.mask is a boolean numpy array, that gets converted here to an integer array)

                    self.ui.progressBar.setProperty(
                        "value",
                        math.ceil(100 * (float(
                            float(it) / float(self.ui.listWidget.count())))))
예제 #8
0
def cosmiczap(filename, outname, sigclip=6.0, maxiter=3, verbose=True):
    """
    NAME:
        cosmiczap
    PURPOSE:
        Removes cosmic rays using Laplacian cosmic ray identification written in cosmics.py 
    INPUTS:
        filename - file or list of files to be cosmic ray zapped
        outfile  - name of output file
    OPTIONAL KEYWORDS:
        sigclip  - sigma to clip
        maxiter  - maximum number of times to iterate loop
        verbose  - quiet?
    EXAMPLE:
        cosmiczap(filename, outname)
    DEPENDENCIES:
        cosmic.py (described in http://arxiv.org/pdf/1506.07791v3.pdf)  
    FUTURE IMPROVEMENTS:
        Read readnoise from header?    
    """

    data, head = cosmics.fromfits(filename, verbose=False)

    gain = head['GAIN']
    c = cosmics.cosmicsimage(data,
                             gain=gain,
                             readnoise=18,
                             sigclip=sigclip,
                             sigfrac=0.5,
                             objlim=5.0,
                             verbose=False)

    tot = c.run(maxiter=maxiter, verbose=False)

    head['NPZAP'] = (tot, "Num. of pixels zapped by cosmiczap")
    date = datetime.datetime.now().isoformat()
    head.add_history('Processed by cosmiczap ' + date)

    if verbose:
        print '  Zapped %d total affected pixels (%.3f%% of total)' % (
            tot, tot * 100.0 / np.size(data))

    cosmics.tofits(outname, c.cleanarray, head, verbose=False)
예제 #9
0
def cosmic_reduce(dir, field, band):
    """
    cosmic_reduce: read the FITS file and use L.A. Cosmic (http://www.astro.yale.edu/dokkum/lacosmic/)
    to remove cosmic rays in the images
    INPUT:
    - dir: directory input of the combine images ('reduced/')
    - field: beginning of the file name (e.g., 'Field027_A_72')
    - band: {'g','r','i','z'} band
    PARAMETERS for LA Cosmic:
    - gain and readnoise are the property from the telescope (PISCO: gain 4 ADU/e, readnoise 3 e -Brian[3/27/17])
    - satlevel: identify saturated level for bright stars
    - sigclip, sigfrac, objlim
    OUTPUT:
    - nField..._g.fits: not clean data (original with a mask cut)
    - cField..._g.fits: clean version, removed cosmic ray
    - mField..._g.fits: masked file to remove cosmic ray
    """
    array, header = cosmics.fromfits(
        os.path.join(dir, field + '_' + band + '.fits'))
    #cutting the circular aperature of the image out to only have good pixels in the center
    if band == 'g':
        array_c = array[10:-10, 350:2550]
    elif band == 'r':
        array_c = array[10:-10, 350:2550]
    elif band == 'z':
        array_c = array[10:-10, 650:2800]
    elif band == 'i':
        array_c = array[10:-10, 650:2800]
    c = cosmics.cosmicsimage(array_c, gain=4.0, readnoise=3.0, sigclip = 2.5, sigfrac = 0.5,\
                             objlim = 5.0, satlevel=3000.0, verbose=False)
    c.run(maxiter=5)

    # if not os.path.exists(os.path.join(dir,'cosmics')):
    #     os.makedirs(os.path.join(dir,'cosmics'))
    cosmics.tofits(
        os.path.join(dir, 'cosmics', 'n' + field + '_' + band + '.fits'),
        array_c, header)
    cosmics.tofits(
        os.path.join(dir, 'cosmics', 'c' + field + '_' + band + '.fits'),
        c.cleanarray, header)
    cosmics.tofits(
        os.path.join(dir, 'cosmics', 'm' + field + '_' + band + '.fits'),
        c.mask, header)
예제 #10
0
파일: rcred.py 프로젝트: nblago/kpy
def clean_cosmic(f, name):
    '''
    From lacosmic.
    '''
    import cosmics
    
    
    g = fitsutils.get_par(f, "GAIN")
    rn = fitsutils.get_par(f, "RDNOISE")
    array, header = cosmics.fromfits(f)
    
    try:
        c = cosmics.cosmicsimage(array, gain=g, readnoise=rn, sigclip = 8.0, sigfrac = 0.3, satlevel = 64000.0)
        c.run(maxiter = 10)
        out = f.replace('.fits',  '_clean.fits')
    
        cosmics.tofits(out, c.cleanarray, header)
        
        os.remove(f)
    except:
        pass
def origRemoval(fitsFile):
	"""
	Runs the original cosmics.py script on the input FITS file.
	Outputs: origClean.fits, origMask.Fits
	"""
	# Read the FITS :
	array, header = origCosmics.fromfits(fitsFile)
	# array is a 2D numpy array

	# Build the object :
	c = origCosmics.cosmicsimage(array, gain=2.2, readnoise=10.0, sigclip = 5.0,
	 sigfrac = 0.3, objlim = 5.0)
	# There are other options, check the manual...

	# Run the full artillery :
	c.run(maxiter = 4)

	# Write the cleaned image into a new FITS file, conserving the original header :
	origCosmics.tofits("origClean.fits", c.cleanarray, header)

	# If you want the mask, here it is :
	origCosmics.tofits("origMask.fits", c.mask, header)
예제 #12
0
def cosmiczap(filename, outname, sigclip=6.0, maxiter=3, verbose=True):

    """
    NAME:
        cosmiczap
    PURPOSE:
        Removes cosmic rays using Laplacian cosmic ray identification written in cosmics.py 
    INPUTS:
    	filename - file or list of files to be cosmic ray zapped
    	outfile  - name of output file
    OPTIONAL KEYWORDS:
        sigclip  - sigma to clip
        maxiter  - maximum number of times to iterate loop
        verbose  - quiet?
    EXAMPLE:
        cosmiczap(filename, outname)
    DEPENDENCIES:
        cosmic.py (described in http://arxiv.org/pdf/1506.07791v3.pdf)  
    FUTURE IMPROVEMENTS:
        Read readnoise from header?    
    """
    
    data, head = cosmics.fromfits(filename, verbose=False)
    
    gain = head['GAIN']
    c = cosmics.cosmicsimage(data, gain=gain, readnoise=18, sigclip=sigclip,
        sigfrac = 0.5, objlim = 5.0, verbose=False)
    
    tot = c.run(maxiter=maxiter, verbose=False)
    
    head['NPZAP'] = (tot, "Num. of pixels zapped by cosmiczap")
    date = datetime.datetime.now().isoformat()
    head.add_history('Processed by cosmiczap ' + date)    
    
    if verbose: print '  Zapped %d total affected pixels (%.3f%% of total)' \
                      %(tot,tot*100.0/np.size(data))
    
    cosmics.tofits(outname, c.cleanarray, head, verbose=False)
예제 #13
0
파일: rcred.py 프로젝트: rswalters/sedmpy
def clean_cosmic(f):
    '''
    From lacosmic.
    '''
    import cosmics

    out = f.replace('.fits', '_clean.fits')

    #If it does already exist, just return the name.
    if (os.path.isfile(out)):
        return out

    #Otherwise, run the cosmic ray rejection based on LA Cosmic.
    g = fitsutils.get_par(f, "GAIN")
    if (fitsutils.has_par(f, "RDNOISE")):
        rn = fitsutils.get_par(f, "RDNOISE")
    else:
        rn = 20
    array, header = cosmics.fromfits(f)

    try:
        c = cosmics.cosmicsimage(array,
                                 gain=g,
                                 readnoise=rn,
                                 sigclip=8.0,
                                 sigfrac=0.3,
                                 satlevel=64000.0)
        c.run(maxiter=3)
        out = f.replace('.fits', '_clean.fits')

        cosmics.tofits(out, c.cleanarray, header)
        fitsutils.update_par(out, "CRREJ", 1)

        #os.remove(f)
    except:
        pass

    return out
예제 #14
0
    imgobjdir = os.path.join(objdir, image['imgname'])
    os.chdir(imgobjdir)

    # We reset everyting :
    if os.path.isfile("cosmicsmask.fits"):
        os.remove("cosmicsmask.fits")
    if os.path.isfile("cosmicslist.pkl"):
        os.remove("cosmicslist.pkl")
    if os.path.isfile("orig_sig.fits"):
        # Then we reset the original sigma image :
        if os.path.isfile("sig.fits"):
            os.remove("sig.fits")
        os.rename("orig_sig.fits", "sig.fits")

    # We read array and header of that fits file :
    (a, h) = cosmics.fromfits("g.fits", verbose=False)

    # We gather some parameters :

    pssl = image['skylevel']  # The Previously Subtracted Sky Level
    print "PSSL (TM): %.2f" % pssl
    gain = image['gain']
    readnoise = image['readnoise']

    sigclip = cosmicssigclip
    sigfrac = 0.3
    objlim = 3.0

    # Creating the object :
    c = cosmics.cosmicsimage(a,
                             pssl=pssl,
def findcosmics(image):

    imgpsfdir = os.path.join(psfdir, image['imgname'])
    print "Image %i : %s" % (image["execi"], imgpsfdir)

    os.chdir(os.path.join(imgpsfdir, "results"))

    pssl = image['skylevel']
    gain = image['gain']
    #satlevel = image['saturlevel']*gain*maxpixelvaluecoeff
    satlevel = -1.0
    readnoise = image['readnoise']
    print "Gain %.2f, PSSL %.2f, Readnoise %.2f" % (gain, pssl, readnoise)

    for i in range(len(psfstars)):
        starfilename = "star_%03i.fits" % (i + 1)
        sigfilename = "starsig_%03i.fits" % (i + 1)
        origsigfilename = "origstarsig_%03i.fits" % (i + 1)
        starmaskfilename = "starmask_%03i.fits" % (i + 1)
        starcosmicspklfilename = "starcosmics_%03i.pkl" % (i + 1)

        # We reset everyting
        if os.path.isfile(origsigfilename):
            # Then we reset the original sigma image :
            if os.path.isfile(sigfilename):
                os.remove(sigfilename)
            os.rename(origsigfilename, sigfilename)

        if os.path.isfile(starmaskfilename):
            os.remove(starmaskfilename)
        if os.path.isfile(starcosmicspklfilename):
            os.remove(starcosmicspklfilename)

        # We read array and header of that fits file :
        (a, h) = cosmics.fromfits(starfilename, verbose=False)

        # Creating the object :
        c = cosmics.cosmicsimage(
            a,
            pssl=pssl,
            gain=gain,
            readnoise=readnoise,
            sigclip=sigclip,
            sigfrac=sigfrac,
            objlim=objlim,
            satlevel=satlevel,
            verbose=False
        )  # I put a correct satlevel instead of -1, to treat VLT images.

        #print pssl, gain, readnoise, sigclip, sigfrac, objlim

        c.run(maxiter=3)

        ncosmics = np.sum(c.mask)
        #print ncosmics
        #if ncosmics != 0:
        #	print "--- %i pixels ---" % ncosmics

        # We write the mask :
        cosmics.tofits(starmaskfilename,
                       c.getdilatedmask(size=5),
                       verbose=False)

        # And the labels (for later png display) :
        cosmicslist = c.labelmask()
        writepickle(cosmicslist, starcosmicspklfilename, verbose=False)

        # We modify the sigma image, but keep a copy of the original :
        os.rename(sigfilename, origsigfilename)
        (sigarray, sigheader) = cosmics.fromfits(origsigfilename,
                                                 verbose=False)
        sigarray[c.getdilatedmask(size=5)] = 1.0e8
        cosmics.tofits(sigfilename, sigarray, sigheader, verbose=False)
예제 #16
0
def reduce(imglist,files_arc, _cosmic, _interactive_extraction,_arc):

    import string
    import os
    import re
    import sys
    os.environ["PYRAF_BETA_STATUS"] = "1"
    try:      from astropy.io import fits as pyfits
    except:   import   pyfits
    import numpy as np
    import util
    import instruments
    import combine_sides as cs
    import cosmics
    from pyraf import iraf

    dv = util.dvex()
    scal = np.pi / 180.
    
    if not _interactive_extraction:
        _interactive = False
    else:
        _interactive = True

    if not _arc:
        _arc_identify = False
    else:
        _arc_identify = True

    iraf.noao(_doprint=0)
    iraf.imred(_doprint=0)
    iraf.ccdred(_doprint=0)
    iraf.twodspec(_doprint=0)
    iraf.longslit(_doprint=0)
    iraf.onedspec(_doprint=0)
    iraf.specred(_doprint=0)
    iraf.disp(inlist='1', reference='1')

    toforget = ['ccdproc', 'imcopy', 'specred.apall', 'longslit.identify', 'longslit.reidentify', 'specred.standard',
                'longslit.fitcoords', 'onedspec.wspectext']
    for t in toforget:
        iraf.unlearn(t)
    iraf.ccdred.verbose = 'no'
    iraf.specred.verbose = 'no'
    iraf.ccdproc.darkcor = 'no'
    iraf.ccdproc.fixpix = 'no'
    iraf.ccdproc.flatcor = 'no'
    iraf.ccdproc.zerocor = 'no'
    iraf.ccdproc.ccdtype = ''

    iraf.longslit.mode = 'h'
    iraf.specred.mode = 'h'
    iraf.noao.mode = 'h'
    iraf.ccdred.instrument = "ccddb$kpno/camera.dat"

    list_arc_b = []
    list_arc_r = []

    for arcs in files_arc:
        hdr = util.readhdr(arcs)
        if util.readkey3(hdr, 'VERSION') == 'kastb':
            list_arc_b.append(arcs)
        elif util.readkey3(hdr, 'VERSION') == 'kastr':
            list_arc_r.append(arcs)
        else:
            print util.readkey3(hdr, 'VERSION') + 'not in database'
            sys.exit()
    
    asci_files = []
    newlist = [[],[]]

    print '\n### images to reduce :',imglist
    #raise TypeError
    for img in imglist:
        if 'b' in img:
            newlist[0].append(img)
        elif 'r' in img:
            newlist[1].append(img)

    if len(newlist[1]) < 1:
        newlist = newlist[:-1]
    
    for imgs in newlist:
        hdr = util.readhdr(imgs[0])
        if util.readkey3(hdr, 'VERSION') == 'kastb':
            inst = instruments.kast_blue
        elif util.readkey3(hdr, 'VERSION') == 'kastr':
            inst = instruments.kast_red
        else:
            print util.readkey3(hdr, 'VERSION') + 'not in database'
            sys.exit()

        iraf.specred.dispaxi = inst.get('dispaxis')
        iraf.longslit.dispaxi = inst.get('dispaxis')

        _gain = inst.get('gain')
        _ron = inst.get('read_noise')
        iraf.specred.apall.readnoi = _ron
        iraf.specred.apall.gain = _gain

        _object0 = util.readkey3(hdr, 'OBJECT')
        _date0 = util.readkey3(hdr, 'DATE-OBS')


        _biassec0 = inst.get('biassec')
        _trimsec0 = inst.get('trimsec')

        _object0 = re.sub(' ', '', _object0)
        _object0 = re.sub('/', '_', _object0)
        nameout0 = str(_object0) + '_' + inst.get('name') + '_' + str(_date0)

        nameout0 = util.name_duplicate(imgs[0], nameout0, '')
        timg = nameout0
        print '\n### now processing :',timg,' for -> ',inst.get('name')
        if len(imgs) > 1:
            img_str = ''
            for i in imgs:
                img_str = img_str + i + ','
            iraf.imcombine(img_str, output=timg)
        else:
            img = imgs[0]
            if os.path.isfile(timg):
                os.system('rm -rf ' + timg)
            iraf.imcopy(img, output=timg)
        
        zero_file = inst.get('archive_zero_file')
        os.system('cp ' + zero_file + ' .')
        zero_file = string.split(zero_file, '/')[-1]
        
        flat_file = inst.get('archive_flat_file')
        os.system('cp ' + flat_file + ' .')
        flat_file = string.split(flat_file, '/')[-1]
        
        iraf.ccdproc(timg, output='', overscan='yes', trim='yes', zerocor="no", flatcor="no", readaxi='line',
                     trimsec=str(_trimsec0),biassec=str(_biassec0), Stdout=1)

        iraf.ccdproc(timg, output='', overscan='no', trim='no', zerocor="yes", flatcor="no", readaxi='line',
                     zero=zero_file,order=3, Stdout=1)
        iraf.ccdproc(timg, output='', overscan='no', trim='no', zerocor="no", flatcor="yes", readaxi='line',
                     flat=flat_file, Stdout=1)

        img = timg

        #raw_input("Press Enter to continue...")
        print '\n### starting cosmic removal'
        if _cosmic:
            array, header = cosmics.fromfits(img)
            c = cosmics.cosmicsimage(array, gain=inst.get('gain'), readnoise=inst.get('read_noise'), sigclip = 4.5, sigfrac = 0.5, objlim = 1.0)
            c.run(maxiter = 4)
            cosmics.tofits('cosmic_' + img, c.cleanarray, header)

        print '\n### cosmic removal finished'

        img='cosmic_' + img

        if inst.get('name') == 'kast_blue':
            arcfile = list_arc_b[0]
        elif inst.get('name') == 'kast_red':
            arcfile = list_arc_r[0]
        
        if not arcfile.endswith(".fits"):
            arcfile=arcfile+'.fits'

        if os.path.isfile(arcfile):
            util.delete('t' + arcfile)
            iraf.ccdproc(arcfile, output= 't' + arcfile, overscan='yes', trim='yes', zerocor="no", flatcor="no",
                         readaxi='line', trimsec=str(_trimsec0), biassec=str(_biassec0), Stdout=1)
            arcfile = 't' + arcfile
        else:
            print '\n### warning no arcfile \n exit '
            sys.exit()

        if not os.path.isdir('database/'):
                os.mkdir('database/')
        
        if _arc_identify:
            arc_ex=re.sub('.fits', '.ms.fits', arcfile)
            print '\n### arcfile : ',arcfile
            print '\n### arcfile extraction : ',arc_ex
            iraf.specred.apall(arcfile, output='', line = 'INDEF', nsum=10, interactive='no', extract='yes',find='yes', nfind=1 ,format='multispec', trace='no',back='no',recen='no')
            iraf.longslit.identify(images=arc_ex, section=inst.get('section'),coordli=inst.get('line_list'),function = 'spline3',order=3, mode='h')
        else:
            arcref = inst.get('archive_arc_extracted')
            arcrefid = inst.get('archive_arc_extracted_id')
            os.system('cp ' + arcref + ' .')
            arcref = string.split(arcref, '/')[-1]
            os.system('cp ' + arcrefid + ' ./database')

            arc_ex=re.sub('.fits', '.ms.fits', arcfile)

            print '\n###  arcfile : ',arcfile
            print '\n###  arcfile extraction : ',arc_ex
            print '\n###  arc referenece : ',arcref
            iraf.specred.apall(arcfile, output=arc_ex, line = 'INDEF', nsum=10, interactive='no', extract='yes',find='yes', nfind=1 ,format='multispec', trace='no',back='no',recen='no')

            iraf.longslit.reidentify(referenc=arcref, images=arc_ex, interac='NO', section=inst.get('section'), 
                                    coordli=inst.get('line_list'), shift='INDEF', search='INDEF',
                                    mode='h', verbose='YES', step=0,nsum=5, nlost=2, cradius=10, refit='yes',overrid='yes',newaps='no')
        
        #print '\n### checking sky lines '
        #_skyfile = inst.get('sky_file')
        #shift = util.skyfrom2d(img, _skyfile,'True')
        #print '\n### I found a shift of : ',shift

        print '\n### extraction using apall'
        result = []
        hdr_image = util.readhdr(img)
        _type=util.readkey3(hdr_image, 'object')

        if _type.startswith("arc") or _type.startswith("dflat") or _type.startswith("Dflat") or _type.startswith("Dbias") or _type.startswith("Bias"):
            print '\n### warning problem \n exit '
            sys.exit()
        else:
            imgex = util.extractspectrum(
                img, dv, inst, _interactive, 'obj')
            print '\n### applying wavelength solution'
            iraf.disp(inlist=imgex, reference=arc_ex)   
            sensfile = inst.get('archive_sens')
            os.system('cp ' + sensfile + ' .')
            sensfile = string.split(sensfile, '/')[-1]
            if sensfile:
                print '\n### sensitivity function : ',sensfile
                imgf = re.sub('.fits', '_f.fits', img)
                _extinction = inst.get('extinction_file')
                _observatory = inst.get('observatory')
                _exptime = util.readkey3(hdr, 'EXPTIME')
                _airmass = util.readkey3(hdr, 'AIRMASS')
                util.delete(imgf)
                dimgex='d'+imgex
                iraf.specred.calibrate(input=dimgex, output=imgf, sensiti=sensfile, extinct='yes',
                                        extinction=_extinction,flux='yes', ignorea='yes', airmass=_airmass, exptime=_exptime,
                                        fnu='no')
                imgout = imgf
                imgasci = re.sub('.fits', '.asci', imgout)
                errasci = re.sub('.fits', '_err.asci', imgout)
                util.delete(imgasci)
                iraf.onedspec.wspectext(imgout + '[*,1,1]', imgasci, header='no')
                iraf.onedspec.wspectext(imgout + '[*,1,4]', errasci, header='no')
                spec = np.transpose(np.genfromtxt(imgasci))
                err = np.transpose(np.genfromtxt(errasci))
                util.delete(errasci)
                final = np.transpose([spec[0], spec[1], err[1]])
                np.savetxt(imgasci, final)

                result = result + [imgout, imgasci]

        result = result + [imgex] + [timg]
       
        asci_files.append(imgasci)
        if not os.path.isdir(_object0 + '/'):
            os.mkdir(_object0 + '/')
            for img in result:
                os.system('mv ' + img + ' ' + _object0 + '/')
        else:
            for img in result:
                os.system('mv ' + img + ' ' + _object0 + '/')
        
        if not _arc_identify:
            util.delete(arcref)
        util.delete(sensfile)
        util.delete(zero_file)
        util.delete(flat_file)
        util.delete(arc_ex)
        util.delete(arcfile)
        util.delete('logfile')
        util.delete(dimgex)
        util.delete('cosmic_*')
    print '\n### now i will merge ...'
    if len(asci_files) > 1:
        final = cs.combine_blue_red(asci_files[0], asci_files[1], _object0)
    print '\n### final result in folder ',_object0,' is ',_object0+'_merged.asci'
    return result
예제 #17
0
"""
Given an image file (.fits format) this script will remove cosmic rays from image which will contaminate the data
The number of iterations the cleanup process will occur is user specified as wll as the various parameters of the clen up process such as gain, noise, and standard deviation of noise etc...
"""

import cosmics

"Import the image file"
file_path = "/Users/edenmolina/Documents/Astro/Coadds/2013/1206_10_1.fits"
name = "J1206"
image_file, hdr = cosmics.fromfits(file_path)
iterations = 10
"Create lacosmics object"
c = cosmics.cosmicsimage(image_file,
                         gain=7,
                         readnoise=.4,
                         sigclip=2,
                         sigfrac=.5,
                         objlim=4)

"Clean the image and export"
for i in range(iterations):
    print "Iteration: %s" % i
    c.lacosmiciteration()
    c.clean()

cosmics.tofits('/Users/edenmolina/Desktop/Masks/%s_clean.fits' % name,
               c.cleanarray, hdr)
cosmics.tofits("/Users/edenmolina/Desktop/Masks/%s_mask.fits" % name, c.mask,
               hdr)
예제 #18
0
              low_reject=0.,
              high_reject=0.,
              niterate=1,
              grow=0.,
              graphics="stdgraph",
              cursor="")

iraf.imstat('nmflat.fits')
os.system("ls J105829*b.fits GD248*b.fits > flatf.in")
os.system("sed s/b.fits/bf.fits/g flatf.in > flatf.out")
iraf.imarith('@flatf.in', '/', 'nmflat.fits', '@flatf.out')
print("***********************************************************")
print("Flat correction done!")

# Removal of cosmic rays from the images
array, header = cosmics.fromfits(
    "J105829_250_3500_4_Grism_7_2015_06_17_yf170018bf.fits")
c = cosmics.cosmicsimage(array,
                         gain=1.22,
                         readnoise=4.8,
                         sigclip=4.5,
                         sigfrac=0.3,
                         objlim=4.5)
c.run(maxiter=4)
cosmics.tofits("J105829_250_3500_4_Grism_7_2015_06_17_yf170018bfc.fits",
               c.cleanarray, header)

array, header = cosmics.fromfits(
    "GD248_standard_250_3500_4_Grism_7_yf170031bf.fits")
c = cosmics.cosmicsimage(array,
                         gain=1.22,
                         readnoise=4.8,
예제 #19
0
def esi_cosmic(date):

    #Get edge masks from file
    orders_mask = pickle.load(
        open(str(date) + '/Calibs/orders_mask_' + str(date) + '.p', 'rb'))
    background_mask = pickle.load(
        open(str(date) + '/Calibs/background_mask_' + str(date) + '.p', 'rb'))

    #Bias
    bias = pyfits.getdata(str(date) + '/Calibs/bias_' + str(date) + '.fits')

    #Normalized Flat
    flat = pyfits.getdata(
        str(date) + '/Calibs/norm_flat_' + str(date) + '.fits')

    #READ LOG
    im1 = open(str(date) + '/Logs/esi_info_' + str(date) + '.dat', 'r')
    data1 = im1.readlines()
    im1.close()

    filename = []
    dateobs = []
    objname = []
    imgtype = []
    ra = []
    dec = []
    exptime = []
    usable = []

    for line in data1:
        p = line.split()
        filename.append(p[0])
        dateobs.append(p[1])
        objname.append(p[2])
        imgtype.append(p[3])
        ra.append(p[4])
        dec.append(p[5])
        exptime.append(p[6])
        usable.append(p[7])

    #Rewrite in a more convenient array with format array[line][element]
    alldata = []

    for line in range(len(usable)):
        alldata.append([
            filename[line], dateobs[line], objname[line], imgtype[line],
            ra[line], dec[line], exptime[line], usable[line]
        ])

    #Find good files:
    good = []
    for line in range(len(alldata)):
        if "yes" in alldata[line][7]:
            good.append(alldata[line])

    #Find list of objects:
    names = []
    for line in range(len(alldata)):
        if ("Object" in alldata[line][3]
                and float(alldata[line][6]) > 600) or "*" in alldata[line][2]:
            names.append(alldata[line][2])
    objects = np.array(list(set(names)))
    objects.sort()  #ascending order, modify in place

    #Find list of lines
    names = []
    for line in range(len(alldata)):
        if "Line" in alldata[line][3]:
            names.append(alldata[line][2])
    lines = np.array(list(set(names)))
    lines.sort()  #ascending order, modify in place

    #Find list of stars:
    names = []
    for line in range(len(alldata)):
        if "*" in alldata[line][2]:
            names.append(alldata[line][2])
    stars = np.array(list(set(names)))
    stars.sort()  #ascending order, modify in place

    #Make directory to hold decosmicified files
    if not os.path.exists(str(date) + '/Calibs/cosmicless/'):
        os.makedirs(str(date) + '/Calibs/cosmicless/')

    #Remove cosmics from each lamp
    for obj_id in lines:
        print "reducing " + str(obj_id) + '...'

        #Find files related to this object
        aobj_id = []
        for line in range(len(good)):
            if str(obj_id) in good[line][2]:
                aobj_id.append(good[line])
        print str(len(aobj_id)), "files for " + str(obj_id)

        #Write path to each objects files:
        obj_locs = [
            str(date) + '/Raw/' + str(aobj_id[line][0])
            for line in range(len(aobj_id))
        ]

        #Read in and de-cosmify
        for line in range(len(obj_locs)):

            array, header = cosmics.fromfits(obj_locs[line])
            #array = array - bias #backwards for some reason
            c = cosmics.cosmicsimage(array,
                                     gain=1.29,
                                     readnoise=2.2,
                                     sigclip=6,
                                     objlim=5.0,
                                     sigfrac=0.7,
                                     satlevel=1e4)
            c.run(
                maxiter=3
            )  # can increase up to 4 to improve precision, but takes longer
            cosmics.tofits(
                str(date) + '/Calibs/cosmicless/' + str(obj_id) + '_' +
                str(line + 1) + 'decos.fits', c.cleanarray, header)

            #now zip it (to save space)
            f = pyfits.getdata(
                str(date) + '/Calibs/cosmicless/' + str(obj_id) + '_' +
                str(line + 1) + 'decos.fits')
            hdu = pyfits.CompImageHDU(f)
            hdu.writeto(str(date) + '/Calibs/cosmicless/' + str(obj_id) + '_' +
                        str(line + 1) + 'decos.fits',
                        clobber=True)

    #Remove cosmics from each object
    for obj_id in objects:
        print "reducing " + str(obj_id) + '...'

        #Find files related to this object
        aobj_id = []
        for line in range(len(good)):
            if str(obj_id) in good[line][2]:
                aobj_id.append(good[line])
        print str(len(aobj_id)), "files for " + str(obj_id)

        #Write path to each objects files:
        obj_locs = [
            str(date) + '/Raw/' + str(aobj_id[line][0])
            for line in range(len(aobj_id))
        ]

        #Read in and de-cosmify
        for line in range(len(obj_locs)):

            array, header = cosmics.fromfits(obj_locs[line])
            #array = array - bias #backwards for some reason
            c = cosmics.cosmicsimage(array,
                                     gain=1.29,
                                     readnoise=2.2,
                                     sigclip=3.8,
                                     objlim=3.0,
                                     sigfrac=0.7,
                                     satlevel=-1)
            c.run(
                maxiter=3
            )  # can increase up to 4 to improve precision, but takes longer
            cosmics.tofits(
                str(date) + '/Calibs/cosmicless/' + str(obj_id) + '_' +
                str(line + 1) + 'decos.fits', c.cleanarray, header)

            #now zip it (to save space)
            f = pyfits.getdata(
                str(date) + '/Calibs/cosmicless/' + str(obj_id) + '_' +
                str(line + 1) + 'decos.fits')
            hdu = pyfits.CompImageHDU(f)
            hdu.writeto(str(date) + '/Calibs/cosmicless/' + str(obj_id) + '_' +
                        str(line + 1) + 'decos.fits',
                        clobber=True)

    #Remove cosmics from each star
    for obj_id in stars:
        print "reducing " + str(obj_id) + '...'

        #Find files related to this object
        aobj_id = []
        for line in range(len(good)):
            if str(obj_id) == good[line][2]:
                aobj_id.append(good[line])
        print str(len(aobj_id)), "files for " + str(obj_id)

        #Write path to each objects files:
        obj_locs = [
            str(date) + '/Raw/' + str(aobj_id[line][0])
            for line in range(len(aobj_id))
        ]

        #Read in and de-cosmify
        for line in range(len(obj_locs)):

            array, header = cosmics.fromfits(obj_locs[line])
            #array = array - bias #backwards for some reason
            c = cosmics.cosmicsimage(array,
                                     gain=1.29,
                                     readnoise=2.2,
                                     sigclip=10,
                                     objlim=7.0,
                                     sigfrac=0.7,
                                     satlevel=15000)
            c.run(
                maxiter=3
            )  # can increase up to 4 to improve precision, but takes longer
            cosmics.tofits(
                str(date) + '/Calibs/cosmicless/' + str(obj_id) + '_' +
                str(line + 1) + 'decos.fits', c.cleanarray, header)

            #now zip it (to save space)
            f = pyfits.getdata(
                str(date) + '/Calibs/cosmicless/' + str(obj_id) + '_' +
                str(line + 1) + 'decos.fits')
            hdu = pyfits.CompImageHDU(f)
            hdu.writeto(str(date) + '/Calibs/cosmicless/' + str(obj_id) + '_' +
                        str(line + 1) + 'decos.fits',
                        clobber=True)
예제 #20
0
def reduce(imglist, files_arc, files_flat, _cosmic, _interactive_extraction,
           _arc):
    import string
    import os
    import re
    import sys
    import pdb
    os.environ["PYRAF_BETA_STATUS"] = "1"
    try:
        from astropy.io import fits as pyfits
    except:
        import pyfits
    import numpy as np
    import util
    import instruments
    import combine_sides as cs
    import cosmics
    from pyraf import iraf

    dv = util.dvex()
    scal = np.pi / 180.

    if not _interactive_extraction:
        _interactive = False
    else:
        _interactive = True

    if not _arc:
        _arc_identify = False
    else:
        _arc_identify = True

    iraf.noao(_doprint=0)
    iraf.imred(_doprint=0)
    iraf.ccdred(_doprint=0)
    iraf.twodspec(_doprint=0)
    iraf.longslit(_doprint=0)
    iraf.onedspec(_doprint=0)
    iraf.specred(_doprint=0)
    iraf.disp(inlist='1', reference='1')

    toforget = [
        'ccdproc', 'imcopy', 'specred.apall', 'longslit.identify',
        'longslit.reidentify', 'specred.standard', 'longslit.fitcoords',
        'onedspec.wspectext'
    ]
    for t in toforget:
        iraf.unlearn(t)
    iraf.ccdred.verbose = 'no'
    iraf.specred.verbose = 'no'
    iraf.ccdproc.darkcor = 'no'
    iraf.ccdproc.fixpix = 'no'
    iraf.ccdproc.flatcor = 'no'
    iraf.ccdproc.zerocor = 'no'
    iraf.ccdproc.ccdtype = ''

    iraf.longslit.mode = 'h'
    iraf.specred.mode = 'h'
    iraf.noao.mode = 'h'
    iraf.ccdred.instrument = "ccddb$kpno/camera.dat"

    list_arc_b = []
    list_arc_r = []

    for arcs in files_arc:
        hdr = util.readhdr(arcs)
        br, inst = instruments.blue_or_red(arcs)

        if br == 'blue':
            list_arc_b.append(arcs)
        elif br == 'red':
            list_arc_r.append(arcs)
        else:
            errStr = '{} '.format(str(util.readkey3(hdr, 'VERSION')))
            errStr += 'not in database'
            print(errStr)
            sys.exit()

    asci_files = []
    newlist = [[], []]

    print('\n### images to reduce :', imglist)
    #raise TypeError
    for img in imglist:
        if 'b' in img:
            newlist[0].append(img)
        elif 'r' in img:
            newlist[1].append(img)

    if len(newlist[1]) < 1:
        newlist = newlist[:-1]
    elif len(newlist[0]) < 1:
        newlist = newlist[1:]
    else:
        sides = raw_input("Reduce which side? ([both]/b/r): ")
        if sides == 'b':
            newlist = newlist[:-1]
        elif sides == 'r':
            newlist = newlist[1:]

    for imgs in newlist:
        hdr = util.readhdr(imgs[0])
        br, inst = instruments.blue_or_red(imgs[0])
        if br == 'blue':
            flat_file = '../RESP_blue'
        elif br == 'red':
            flat_file = '../RESP_red'
        else:
            errStr = 'Not in intrument list'
            print(errStr)
            sys.exit()

        iraf.specred.dispaxi = inst.get('dispaxis')
        iraf.longslit.dispaxi = inst.get('dispaxis')

        _gain = inst.get('gain')
        _ron = inst.get('read_noise')
        iraf.specred.apall.readnoi = _ron
        iraf.specred.apall.gain = _gain

        _object0 = util.readkey3(hdr, 'OBJECT')
        _date0 = util.readkey3(hdr, 'DATE-OBS')

        _object0 = re.sub(' ', '', _object0)
        _object0 = re.sub('/', '_', _object0)
        nameout0 = str(_object0) + '_' + inst.get('name') + '_' + str(_date0)

        nameout0 = util.name_duplicate(imgs[0], nameout0, '')
        timg = nameout0
        print('\n### now processing :', timg, ' for -> ', inst.get('name'))
        if len(imgs) > 1:
            img_str = ''
            for i in imgs:
                img_str = img_str + i + ','
            iraf.imcombine(img_str, output=timg)
        else:
            img = imgs[0]
            if os.path.isfile(timg):
                os.system('rm -rf ' + timg)
            iraf.imcopy(img, output=timg)

        # should just do this by hand
        iraf.ccdproc(timg,
                     output='',
                     overscan='no',
                     trim='no',
                     zerocor="no",
                     flatcor="yes",
                     readaxi='line',
                     flat=flat_file,
                     Stdout=1)

        img = timg

        #raw_input("Press Enter to continue...")
        if _cosmic:
            print('\n### starting cosmic removal')

            array, header = cosmics.fromfits(img)
            c = cosmics.cosmicsimage(array,
                                     gain=inst.get('gain'),
                                     readnoise=inst.get('read_noise'),
                                     sigclip=5,
                                     sigfrac=0.5,
                                     objlim=2.0)
            c.run(maxiter=5)
            cosmics.tofits('cosmic_' + img, c.cleanarray, header)
            img = 'cosmic_' + img

            print('\n### cosmic removal finished')
        else:
            print(
                '\n### No cosmic removal, saving normalized image for inspection???'
            )

        if inst.get('arm') == 'blue' and len(list_arc_b) > 0:
            arcfile = list_arc_b[0]
        elif inst.get('arm') == 'red' and len(list_arc_r) > 0:
            arcfile = list_arc_r[0]
        else:
            arcfile = None

        if arcfile is not None and not arcfile.endswith(".fits"):
            arcfile = arcfile + '.fits'

        if not os.path.isdir('database/'):
            os.mkdir('database/')

        if _arc_identify:
            os.system('cp ' + arcfile + ' .')
            arcfile = string.split(arcfile, '/')[-1]
            arc_ex = re.sub('.fits', '.ms.fits', arcfile)

            arcref = inst.get('archive_arc_extracted')
            arcref_img = string.split(arcref, '/')[-1]
            arcref_img = arcref_img.replace('.ms.fits', '')
            arcrefid = inst.get('archive_arc_extracted_id')
            os.system('cp ' + arcref + ' .')
            arcref = string.split(arcref, '/')[-1]
            os.system('cp ' + arcrefid + ' ./database')

            aperture = inst.get('archive_arc_aperture')
            os.system('cp ' + aperture + ' ./database')

            print('\n###  arcfile : ', arcfile)
            print('\n###  arcfile extraction : ', arc_ex)
            print('\n###  arc reference : ', arcref)

            # read for some meta data to get the row right
            tmpHDU = pyfits.open(arcfile)
            header = tmpHDU[0].header
            try:
                spatialBin = int(header['binning'].split(',')[0])
            except KeyError:
                spatialBin = 1
            apLine = 700 // spatialBin

            iraf.specred.apall(arcfile,
                               output=arc_ex,
                               ref=arcref_img,
                               line=apLine,
                               nsum=10,
                               interactive='no',
                               extract='yes',
                               find='yes',
                               nfind=1,
                               format='multispec',
                               trace='no',
                               back='no',
                               recen='no')

            iraf.longslit.reidentify(referenc=arcref,
                                     images=arc_ex,
                                     interac='NO',
                                     section=inst.get('section'),
                                     coordli=inst.get('line_list'),
                                     shift='INDEF',
                                     search='INDEF',
                                     mode='h',
                                     verbose='YES',
                                     step=0,
                                     nsum=5,
                                     nlost=2,
                                     cradius=10,
                                     refit='yes',
                                     overrid='yes',
                                     newaps='no')

        print('\n### extraction using apall')
        result = []
        hdr_image = util.readhdr(img)
        _type = util.readkey3(hdr_image, 'object')

        if (_type.startswith("arc") or _type.startswith("dflat")
                or _type.startswith("Dflat") or _type.startswith("Dbias")
                or _type.startswith("Bias")):
            print('\n### warning problem \n exit ')
            sys.exit()
        else:
            imgex = util.extractspectrum(img, dv, inst, _interactive, 'obj')
            print('\n### applying wavelength solution')
            print(arc_ex)
            iraf.disp(inlist=imgex, reference=arc_ex)

        result = result + [imgex] + [timg]

        # asci_files.append(imgasci)
        if not os.path.isdir(_object0 + '_ex/'):
            os.mkdir(_object0 + '_ex/')

        if not _arc_identify:
            util.delete(arcref)
        else:
            util.delete(arcfile)

        util.delete(arc_ex)
        util.delete(img)
        util.delete(imgex)
        util.delete(arcref)
        util.delete('logfile')
        #if _cosmic:
        #util.delete(img[7:])
        #util.delete("cosmic_*")

        os.system('mv ' + 'd' + imgex + ' ' + _object0 + '_ex/')

        use_sens = raw_input('Use archival flux calibration? [y]/n ')
        if use_sens != 'no':
            sensfile = inst.get('archive_sens')
            os.system('cp ' + sensfile + ' ' + _object0 + '_ex/')
            bstarfile = inst.get('archive_bstar')
            os.system('cp ' + bstarfile + ' ' + _object0 + '_ex/')

    return result
예제 #21
0
else:
    images = db.select(imgdb, ['flagali', 'gogogo', 'treatme'],
                       ['==1', True, True], ['recno', 'imgname', 'stddev'],
                       sortFields=['imgname'],
                       returnType='dict')

print "I will treat %i images." % len(images)
proquest(askquestions)

for n, image in enumerate(images):

    print n + 1, "/", len(images), ":", image['imgname']

    aliimg = os.path.join(alidir, image['imgname'] + "_ali.fits")

    (a, h) = cosmics.fromfits(aliimg, verbose=False)

    zeroa = a <= (0.01 * image["stddev"])
    cols = zeroa.all(axis=0)
    lins = zeroa.all(axis=1)

    colsshape = a[:, cols].shape
    a[:, cols] = (np.random.randn(colsshape[0] * colsshape[1]) *
                  image["stddev"]).reshape(colsshape)

    linsshape = a[lins, :].shape
    a[lins, :] = (np.random.randn(linsshape[0] * linsshape[1]) *
                  image["stddev"]).reshape(linsshape)

    cosmics.tofits(aliimg, a, verbose=False)
예제 #22
0
def cr_clean(fits_fn):
    det = pyfits.getval(fits_fn, 'DETECTOR')

    if det == 'IR':
        print('CR-cleaning IR FLT file: %s' % fits_fn)

        readnoise = 20.0     # for WFC3/IR
        #sigclip = 5.0
        sigclip = 5.0
        sigfrac = 0.3     # small means crs are grown more  0.3 is good!
        #objlim = 5.0
        objlim = 12.0
        #maxiter = 4
        maxiter = 3
        exptime = pyfits.getval(fits_fn, 'EXPTIME')
        gain = exptime

        (image, header) = cosmics.fromfits(fits_fn)
        c = cosmics.cosmicsimage(image, gain=gain, readnoise=readnoise, sigclip=sigclip, sigfrac=sigfrac, objlim=objlim)
        c.run(maxiter=maxiter)

        clean_fn = fits_fn.replace('.fits', '_crclean.fits')
        mask_fn = fits_fn.replace('.fits', '_crmask.fits')

        fo = pyfits.open(fits_fn)
        fo[1].data = c.cleanarray
        fo.writeto(clean_fn)
        fo.close()

        #cosmics.tofits(clean_fn, c.cleanarray, header)
        cosmics.tofits(mask_fn, c.mask, header)

    if det == 'UVIS':
        print('CR-cleaning UVIS FLT file: %s' % fits_fn)
        readnoise = 3.105     # for WFC3/UVIS

        # good
        #sigclip = 5.0
        #sigfrac = 0.1     # small means crs are grown more  0.3 is good!
        #objlim = 5.0

        # some residuals
        #sigclip = 4.5
        #sigfrac = 0.1     # small means crs are grown more  0.3 is good!
        #objlim = 4.0

        sigclip = 4.5
        sigfrac = 0.1     # small means crs are grown more  0.3 is good!
        objlim = 2.0

        maxiter = 4
        exptime = pyfits.getval(fits_fn, 'EXPTIME')
        gain = 1.0
        ff = pyfits.open(fits_fn)
        header = ff[0].header
        image = ff[1].data

        #(image, header) = cosmics.fromfits(fits_fn)
        c = cosmics.cosmicsimage(image, gain=gain, readnoise=readnoise, sigclip=sigclip, sigfrac=sigfrac, objlim=objlim)
        c.run(maxiter=maxiter)

        image2 = ff[4].data
        d = cosmics.cosmicsimage(image2, gain=gain, readnoise=readnoise, sigclip=sigclip, sigfrac=sigfrac, objlim=objlim)
        d.run(maxiter=maxiter)

        clean_fn = fits_fn.replace('.fits', '_crclean.fits')
        mask_fn = fits_fn.replace('.fits', '_crmask.fits')

        fo = pyfits.open(fits_fn)
        fo[1].data = c.cleanarray
        fo[4].data = d.cleanarray
        fo.writeto(clean_fn)
        fo.close()

        #cosmics.tofits(clean_fn, c.cleanarray, header)
        cosmics.tofits(mask_fn, c.mask, header)
예제 #23
0
def esi_cosmic(date):
    

    #Get edge masks from file
    orders_mask = pickle.load(open(str(date)+'/Calibs/orders_mask_'+str(date)+'.p', 'rb'))
    background_mask = pickle.load(open(str(date)+'/Calibs/background_mask_'+str(date)+'.p', 'rb'))

    #Bias
    bias = pyfits.getdata(str(date)+'/Calibs/bias_'+str(date)+'.fits')

    #Normalized Flat
    flat = pyfits.getdata(str(date)+'/Calibs/norm_flat_'+str(date)+'.fits')

    #READ LOG
    im1 = open(str(date)+'/Logs/esi_info_'+str(date)+'.dat','r')
    data1 = im1.readlines()
    im1.close()

    filename = []
    dateobs = []
    objname = []
    imgtype = []
    ra = []
    dec = []
    exptime = []
    usable = []

    for line in data1:
        p = line.split()
        filename.append(p[0])
        dateobs.append(p[1])
        objname.append(p[2])
        imgtype.append(p[3])
        ra.append(p[4])
        dec.append(p[5])
        exptime.append(p[6])
        usable.append(p[7])

    #Rewrite in a more convenient array with format array[line][element]    
    alldata = []

    for line in range(len(usable)):
        alldata.append([filename[line],dateobs[line],objname[line],imgtype[line],
                        ra[line],dec[line],exptime[line],usable[line]])
        
    #Find good files:
    good = []
    for line in range(len(alldata)):
       if "yes" in alldata[line][ 7]:
           good.append(alldata[line])
       
    #Find list of objects:
    names = []
    for line in range(len(alldata)):
        if ("Object" in alldata[line][3] and float(alldata[line][6]) > 600) or "*" in alldata[line][2]:
            names.append(alldata[line][2])
    objects = np.array(list(set(names)))
    objects.sort() #ascending order, modify in place 
    
    #Find list of lines
    names = []
    for line in range(len(alldata)):
        if "Line" in alldata[line][3]:
            names.append(alldata[line][2])
    lines = np.array(list(set(names)))
    lines.sort() #ascending order, modify in place
    
    #Find list of stars:
    names = []
    for line in range(len(alldata)):
        if "*" in alldata[line][2]:
            names.append(alldata[line][2])
    stars = np.array(list(set(names)))
    stars.sort() #ascending order, modify in place 
    
    #Make directory to hold decosmicified files
    if not os.path.exists(str(date)+'/Calibs/cosmicless/'):
        os.makedirs(str(date)+'/Calibs/cosmicless/')
    
    #Remove cosmics from each lamp
    for obj_id in lines:
        print "reducing " + str(obj_id) + '...'
    
        #Find files related to this object
        aobj_id = []
        for line in range(len(good)):
            if str(obj_id) in good[line][2]:
                aobj_id.append(good[line])
        print str(len(aobj_id)), "files for "+ str(obj_id)
    
        #Write path to each objects files:
        obj_locs = [str(date)+'/Raw/' + str(aobj_id[line][0]) for line in range(len(aobj_id))]
    
        #Read in and de-cosmify
        for line in range(len(obj_locs)):
        
            array, header = cosmics.fromfits(obj_locs[line])
            #array = array - bias #backwards for some reason
            c = cosmics.cosmicsimage(array, gain = 1.29, readnoise = 2.2, sigclip = 6, objlim = 5.0, sigfrac = 0.7, satlevel = 1e4)
            c.run(maxiter = 3) # can increase up to 4 to improve precision, but takes longer
            cosmics.tofits(str(date)+'/Calibs/cosmicless/' + str(obj_id)+'_'+str(line+1)+'decos.fits', c.cleanarray, header)
            
            #now zip it (to save space)
            f = pyfits.getdata(str(date)+'/Calibs/cosmicless/' + str(obj_id)+'_'+str(line+1)+'decos.fits')
            hdu = pyfits.CompImageHDU(f)
            hdu.writeto(str(date)+'/Calibs/cosmicless/' + str(obj_id)+'_'+str(line+1)+'decos.fits', clobber=True)

    #Remove cosmics from each object
    for obj_id in objects:
        print "reducing " + str(obj_id) + '...'
    
        #Find files related to this object
        aobj_id = []
        for line in range(len(good)):
            if str(obj_id) in good[line][2]:
                aobj_id.append(good[line])
        print str(len(aobj_id)), "files for "+ str(obj_id)
    
        #Write path to each objects files:
        obj_locs = [str(date)+'/Raw/' + str(aobj_id[line][0]) for line in range(len(aobj_id))]
    
        #Read in and de-cosmify
        for line in range(len(obj_locs)):
        
            array, header = cosmics.fromfits(obj_locs[line])
            #array = array - bias #backwards for some reason
            c = cosmics.cosmicsimage(array, gain = 1.29, readnoise = 2.2, sigclip = 3.8, objlim = 3.0, sigfrac = 0.7, satlevel = -1)
            c.run(maxiter = 3) # can increase up to 4 to improve precision, but takes longer
            cosmics.tofits(str(date)+'/Calibs/cosmicless/' + str(obj_id)+'_'+str(line+1)+'decos.fits', c.cleanarray, header)
            
            #now zip it (to save space)
            f = pyfits.getdata(str(date)+'/Calibs/cosmicless/' + str(obj_id)+'_'+str(line+1)+'decos.fits')
            hdu = pyfits.CompImageHDU(f)
            hdu.writeto(str(date)+'/Calibs/cosmicless/' + str(obj_id)+'_'+str(line+1)+'decos.fits', clobber=True)
            
    #Remove cosmics from each star
    for obj_id in stars:
        print "reducing " + str(obj_id) + '...'
    
        #Find files related to this object
        aobj_id = []
        for line in range(len(good)):
            if str(obj_id) == good[line][2]:
                aobj_id.append(good[line])
        print str(len(aobj_id)), "files for "+ str(obj_id)
    
        #Write path to each objects files:
        obj_locs = [str(date)+'/Raw/' + str(aobj_id[line][0]) for line in range(len(aobj_id))]
    
        #Read in and de-cosmify
        for line in range(len(obj_locs)):
        
            array, header = cosmics.fromfits(obj_locs[line])
            #array = array - bias #backwards for some reason
            c = cosmics.cosmicsimage(array, gain = 1.29, readnoise = 2.2, sigclip = 10, objlim = 7.0, sigfrac = 0.7, satlevel = 15000)
            c.run(maxiter = 3) # can increase up to 4 to improve precision, but takes longer
            cosmics.tofits(str(date)+'/Calibs/cosmicless/' + str(obj_id)+'_'+str(line+1)+'decos.fits', c.cleanarray, header)
            
            #now zip it (to save space)
            f = pyfits.getdata(str(date)+'/Calibs/cosmicless/' + str(obj_id)+'_'+str(line+1)+'decos.fits')
            hdu = pyfits.CompImageHDU(f)
            hdu.writeto(str(date)+'/Calibs/cosmicless/' + str(obj_id)+'_'+str(line+1)+'decos.fits', clobber=True)
예제 #24
0
# The following two lines are only needed as cosmic.py is not in this directory nor in the python path.
# They would not be required if you copy cosmics.py in this directory.
import sys
sys.path.append("../.") # The directory that contains cosmic.py


import cosmics

# Read the FITS :
array, header = cosmics.fromfits("input.fits")
# array is a 2D numpy array

# Build the object :
c = cosmics.cosmicsimage(array, gain=2.2, readnoise=10.0, sigclip = 5.0, sigfrac = 0.3, objlim = 5.0)
# There are other options, check the manual...

# Run the full artillery :
c.run(maxiter = 4)

# Write the cleaned image into a new FITS file, conserving the original header :
cosmics.tofits("clean.fits", c.cleanarray, header)

# If you want the mask, here it is :
cosmics.tofits("mask.fits", c.mask, header)
# (c.mask is a boolean numpy array, that gets converted here to an integer array)
예제 #25
0
def run_cosmics(filename):
    '''
    The main controller.
    '''
    
    output = filename.split('_')[0] + "_cr_" + filename.split('_')[1]

    # Assert the input file exists
    error = filename + ' input for run_cosmics in '
    error += 'run_cosmics.py does not exist.'
    assert os.access(filename, os.F_OK), error
    
    # Define the output name and delete if exists.
    query = os.access(output, os.F_OK)
    if query == True:
        os.remove(output)

        # Find the number of extentions.
    header = pyfits.open(filename)
    header_count = len(header)
    header.close()

    for ext in range(0, header_count):
        print filename + '[' + str(ext) + ']'

        if ext in [0, 5]:
            hdu = pyfits.open(filename)
            array = hdu[ext].data
            header = hdu[ext].header
            pyfits.append(
                output,
                array,
                header)
            hdu.close()
        else:
            # Read the FITS :
            array, header = cosmics.fromfits(filename, hdu = ext)
            # array is a 2D numpy array

            # Build the object
            # WFPC2 PC Chip Settings
            if ext == 1:
                c = cosmics.cosmicsimage(
                        array, 
                        pssl = 0.0, 
                        gain = 1.0, 
                        readnoise = 5.0,
                        sigclip = 3.0, 
                        sigfrac = 0.01, 
                        objlim = 4.0,
                        satlevel = 4095.0,
                        verbose = True)
            # Build the object
            # WFPC2 WF Chip Settings
            elif ext in [2, 3, 4]:
                c = cosmics.cosmicsimage(
                        array, 
                        pssl = 0.0, 
                        gain=1.0, 
                        readnoise=5.0,
                        sigclip = 2.5, 
                        sigfrac = 0.001, 
                        objlim = 5.0,
                        satlevel = 4095.0, 
                        verbose = True)

            # Run the full artillery
            c.run(maxiter = 7)

            # Write the cleaned image into a new FITS file
            # conserving the original header :
            #cosmics.tofits(output, c.cleanarray, header)

            pyfits.append(
                output,
                c.cleanarray.transpose(),
                header,
                ext = 'SCI')

            # If you want the mask, here it is :
            # cosmics.tofits("mask.fits", c.mask, header)
            # (c.mask is a boolean numpy array, that gets 
            # converted here to an integer array)

    assert os.path.isfile(output) == True, 'run_cosmics did not create: ' + output

    # Create a symbolic link to the original c1m files that matches the 
    # Output filename.
    make_c1m_link(os.path.abspath(filename))
예제 #26
0
def whirc_reduce(obj_id):
    
    import pyfits
    import numpy as np
    import matplotlib.pyplot as plt
    import cosmics 
    import astropy.coordinates as coord
    import astropy.units as u
    
    #READ IN DATA AND OBSERVING LOG
    #Read in the bias file to be subtracted from flats
    bias = pyfits.getdata("Calibs/bias.fits")
    bias = bias[0:2048,0:2048]
    
    #Read in the dark file to be subtracted from flats
    dark = pyfits.getdata("Calibs/dark.fits")
    dark = dark[0:2048,0:2048]
    
    #Read in flats
    J_flat = pyfits.getdata('Calibs/New_J_Flat.fits')
    K_flat = pyfits.getdata('Calibs/New_K_Flat.fits')
    
    #Read in data from "whirc_info.dat" (the observation log)
    im1 = open('whirc_info.dat','r')
    data1 = im1.readlines()
    im1.close()
    
    filename = []
    dateobs = []
    objname = []
    imgtype = []
    ra = []
    dec = []
    exptime = []
    usable = []
    rotangle = []
    raoffset = []
    decoffset = []
    
    for line in data1:
        p = line.split()
        filename.append(p[0])
        dateobs.append(p[1])
        objname.append(p[2])
        imgtype.append(p[3])
        ra.append(p[4])
        dec.append(p[5])
        exptime.append(p[6])
        usable.append(p[7])
        rotangle.append(p[8])
        raoffset.append(p[9])
        decoffset.append(p[10])
        
    
    #Rewrite in a more convenient array with format array[line][element]    
    alldata = []
    
    for line in range(len(usable)):
        alldata.append([filename[line],dateobs[line],objname[line],imgtype[line],ra[line],dec[line],exptime[line],usable[line],rotangle[line],raoffset[line],decoffset[line]])
    
    #Find junk files and good files:
    junk = []
    good = []
    for line in range(len(alldata)):
       if "no" in alldata[line][7]:
           junk.append(alldata[line])
       if "yes" in alldata[line][7]:
           good.append(alldata[line])
    
    #Find files related to obj_id in good files
    aobj_id = []
    for line in range(len(good)):
        if str(obj_id) in good[line][2]:
            aobj_id.append(good[line])
    print str(len(aobj_id)),"files for "+str(obj_id)
    
    #Find files through J_filter
    aobj_idJ = []
    for line in range(len(aobj_id)):
        if "J" in aobj_id[line][2]:
            aobj_idJ.append(aobj_id[line])
    print str(len(aobj_idJ)), "J files for "+str(obj_id)
    
    #Find files through K_filter
    aobj_idK = []
    for line in range(len(aobj_id)):
        if "K" in aobj_id[line][2]:
            aobj_idK.append(aobj_id[line])
    print str(len(aobj_idK)), "K files for "+str(obj_id)
    
    
    #Find J files from Night 1
    aobj_idJN1 = []
    for line in range(len(aobj_idJ)):
        if "N1" in aobj_idJ[line][0]:
            aobj_idJN1.append(aobj_idJ[line])
    print str(len(aobj_idJN1)), "J files in N1"
    
    #Fink K files from Night 1
    aobj_idKN1 = []
    for line in range(len(aobj_idK)):
        if "N1" in aobj_idK[line][0]:
            aobj_idKN1.append(aobj_idK[line])
    print str(len(aobj_idKN1)), "K files in N1"
    
    #Find J files from Night 2
    aobj_idJN2 = []
    for line in range(len(aobj_idJ)):
        if "N2" in aobj_idJ[line][0]:
            aobj_idJN2.append(aobj_idJ[line])
    print str(len(aobj_idJN2)), "J files in N2"
    
    #Find K files from Night 2
    aobj_idKN2 = []
    for line in range(len(aobj_idK)):
        if "N2" in aobj_idK[line][0]:
            aobj_idKN2.append(aobj_idK[line])
    print str(len(aobj_idKN2)), "K files in N2"
    
    #Find J files from Night 3
    aobj_idJN3 = []
    for line in range(len(aobj_idJ)):
        if "N3" in aobj_idJ[line][0]:
            aobj_idJN3.append(aobj_idJ[line])
    print str(len(aobj_idJN3)), "J files in N3"
    
    #Find K files from Night 3
    aobj_idKN3 = []
    for line in range(len(aobj_idK)):
        if "N3" in aobj_idK[line][0]:
            aobj_idKN3.append(aobj_idK[line])
    print str(len(aobj_idKN3)), "K files in N3"
    
    #WRITE PATH TO J_FILES_N1
    Jobj_idN1_locs = []
    for line in range(len(aobj_idJN1)):
        Jobj_idN1_locs.append("Raw/"+str(aobj_idJN1[line][0]))
        
    #WRITE PATH TO K_FILES_N1
    Kobj_idN1_locs = []
    for line in range(len(aobj_idKN1)):
        Kobj_idN1_locs.append("Raw/"+str(aobj_idKN1[line][0]))
        
    #WRITE PATH OF J_FILES_N2
    Jobj_idN2_locs = []
    for line in range(len(aobj_idJN2)):
        Jobj_idN2_locs.append("Raw/"+str(aobj_idJN2[line][0]))
    
    #WRITE PATH OF K_FILES_N2
    Kobj_idN2_locs = []
    for line in range(len(aobj_idKN2)):
        Kobj_idN2_locs.append("Raw/"+str(aobj_idKN2[line][0]))
        
    #WRITE PATH OF J_FILES_N3
    Jobj_idN3_locs = []
    for line in range(len(aobj_idJN3)):
        Jobj_idN3_locs.append("Raw/"+str(aobj_idJN3[line][0]))
    
    #WRITE PATH OF K_FILES_N3
    Kobj_idN3_locs = []
    for line in range(len(aobj_idKN3)):
        Kobj_idN3_locs.append("Raw/"+str(aobj_idKN3[line][0]))
        
    #READ IN SKY FILES
    #READ IN SCIENCE EXPOSURES
    
    #J_filter, Night 1
    print "reading in JN1..."
    if len(aobj_idJN1) > 0:
        skyJN1 = pyfits.getdata('Calibs/sky/sky_'+str(obj_id)+'J_N1.fits')
        
        for line in range(len(aobj_idJN1)):
            sci = pyfits.getdata(Jobj_idN1_locs[line])[0:2048,0:2048]
            reduced_sci = (sci - bias - dark - skyJN1)/J_flat
            file = pyfits.PrimaryHDU(reduced_sci)
            file.writeto('Calibs/reduced/'+str(obj_id)+'_'+'JN1_'+str(line + 1)+'.fits', clobber = True)
            array, header = cosmics.fromfits('Calibs/reduced/'+str(obj_id)+'_'+'JN1_'+str(line + 1)+'.fits')
            c = cosmics.cosmicsimage(array)
            c.run(maxiter = 1) # can increase up to 4 to improve precision, but takes longer
            cosmics.tofits('Calibs/reduced/'+str(obj_id)+'_'+'JN1_cos'+str(line + 1)+'.fits', c.cleanarray, header)
            
            
    #K_filter, Night 1
    print "reading in KN1..."    
    if len(aobj_idKN1) > 0:
        skyKN1 = pyfits.getdata('Calibs/sky/sky_'+str(obj_id)+'K_N1.fits')
        
        for line in range(len(aobj_idKN1)):
           sci = pyfits.getdata(Kobj_idN1_locs[line])[0:2048,0:2048]
           reduced_sci = (sci - bias - dark - skyKN1)/K_flat
           file = pyfits.PrimaryHDU(reduced_sci)
           file.writeto('Calibs/reduced/'+str(obj_id)+'_'+'KN1_'+str(line + 1)+'.fits', clobber = True)
           array, header = cosmics.fromfits('Calibs/reduced/'+str(obj_id)+'_'+'KN1_'+str(line + 1)+'.fits')
           c = cosmics.cosmicsimage(array)
           c.run(maxiter = 1) # can increase up to 4 to improve precision, but takes longer
           cosmics.tofits('Calibs/reduced/'+str(obj_id)+'_'+'KN1_cos'+str(line + 1)+'.fits', c.cleanarray, header)
        
    #J_filter, Night 2
    print "reading in JN2..."    
    if len(aobj_idJN2) > 0:
        skyJN2 = pyfits.getdata('Calibs/sky/sky_'+str(obj_id)+'J_N2.fits')
        
        for line in range(len(aobj_idJN2)):
            sci = pyfits.getdata(Jobj_idN2_locs[line])[0:2048,0:2048]
            reduced_sci = (sci - bias - dark - skyJN2)/J_flat
            file = pyfits.PrimaryHDU(reduced_sci)
            file.writeto('Calibs/reduced/'+str(obj_id)+'_'+'JN2_'+str(line + 1)+'.fits', clobber = True)
            array, header = cosmics.fromfits('Calibs/reduced/'+str(obj_id)+'_'+'JN2_'+str(line + 1)+'.fits')
            c = cosmics.cosmicsimage(array)
            c.run(maxiter = 1) # can increase up to 4 to improve precision, but takes longer
            cosmics.tofits('Calibs/reduced/'+str(obj_id)+'_'+'JN2_cos'+str(line + 1)+'.fits', c.cleanarray, header)

    #K_filter, Night 2
    print "reading in KN2..."
    if len(aobj_idKN2) > 0:
        skyKN2 = pyfits.getdata('Calibs/sky/sky_'+str(obj_id)+'K_N2.fits')
        
        for line in range(len(aobj_idKN2)):
            sci = pyfits.getdata(Kobj_idN2_locs[line])[0:2048,0:2048]
            reduced_sci = (sci - bias - dark - skyKN2)/K_flat
            file = pyfits.PrimaryHDU(reduced_sci)
            file.writeto('Calibs/reduced/'+str(obj_id)+'_'+'KN2_'+str(line + 1)+'.fits', clobber = True)
            array, header = cosmics.fromfits('Calibs/reduced/'+str(obj_id)+'_'+'KN2_'+str(line + 1)+'.fits')
            c = cosmics.cosmicsimage(array)
            c.run(maxiter = 1) # can increase up to 4 to improve precision, but takes longer
            cosmics.tofits('Calibs/reduced/'+str(obj_id)+'_'+'KN2_cos'+str(line + 1)+'.fits', c.cleanarray, header)
            
    #J_filter, Night 3
    print "reading in JN3..."  
    if len(aobj_idJN3) > 0:
        skyJN3 = pyfits.getdata('Calibs/sky/sky_'+str(obj_id)+'J_N3.fits')
        
        for line in range(len(aobj_idJN3)):
           sci = pyfits.getdata(Jobj_idN3_locs[line])[0:2048,0:2048]
           reduced_sci = (sci - bias - dark - skyJN3)/J_flat
           file = pyfits.PrimaryHDU(reduced_sci)
           file.writeto('Calibs/reduced/'+str(obj_id)+'_'+'JN3_'+str(line + 1)+'.fits', clobber = True)
           array, header = cosmics.fromfits('Calibs/reduced/'+str(obj_id)+'_'+'JN3_'+str(line + 1)+'.fits')
           c = cosmics.cosmicsimage(array)
           c.run(maxiter = 1) # can increase up to 4 to improve precision, but takes longer
           cosmics.tofits('Calibs/reduced/'+str(obj_id)+'_'+'JN3_cos'+str(line + 1)+'.fits', c.cleanarray, header)
        
    if len(aobj_idKN3) > 0:
        skyKN3 = pyfits.getdata('Calibs/sky/sky_'+str(obj_id)+'K_N3.fits')
        
        for line in range(len(aobj_idKN3)):
            sci = pyfits.getdata(Kobj_idN3_locs[line])[0:2048,0:2048]
            reduced_sci = (sci - bias - dark - skyKN3)/K_flat
            file = pyfits.PrimaryHDU(reduced_sci)
            file.writeto('Calibs/reduced/'+str(obj_id)+'_'+'KN3_'+str(line + 1)+'.fits', clobber = True)
            array, header = cosmics.fromfits('Calibs/reduced/'+str(obj_id)+'_'+'KN3_'+str(line + 1)+'.fits')
            c = cosmics.cosmicsimage(array)
            c.run(maxiter = 1) # can increase up to 4 to improve precision, but takes longer
            cosmics.tofits('Calibs/reduced/'+str(obj_id)+'_'+'KN3_cos'+str(line + 1)+'.fits', c.cleanarray, header)
예제 #27
0
#!/usr/bin/python

from dbauth import *
import cosmics
import os

file_name = 'a.fits'

# some comments on params are here http://obswww.unige.ch/~tewes/cosmics_dot_py/
pssl = 0.0
ccd_gain = 2.687
ccd_readnoise = 8.14
sigclip = 5.0
sigfrac = 0.2
objlim = 3.0
satlevel = 30000
maxiter = 10
verbose = True

(array, header) = cosmics.fromfits(file_name, verbose=verbose)
c = cosmics.cosmicsimage(array, pssl=pssl, gain=ccd_gain, readnoise=ccd_readnoise, 
                         sigclip=sigclip, sigfrac=sigfrac, objlim=objlim,
                         satlevel=satlevel, verbose=verbose)

c.run(maxiter=maxiter, verbose=verbose)

#cleaned_file_name = "a_crcl.fits"
#cosmics.tofits(cleaned_file_name, c.cleanarray, header, verbose=verbose)

#c.make_plots('/disk/Work/Cosmic_rays/Code/CosmicRayExtractor/RP','a_crcl.png')
예제 #28
0
def clean_image(infile, true_rot=True, crop=True, wcs=None):

	basefile = os.path.basename(infile)
	cleanfile = os.path.join(DATA_DIR, basefile.replace('.fits','_clean.fits'))
	maskfile = os.path.join(MASK_DIR, basefile.replace('.fits','_mask.fits'))
	# Read the FITS :
	array, header = cosmics.fromfits(infile)
	# array is a 2D numpy array
	if wcs is None:
		try:
			clean_image.wcs
		except AttributeError:
			#clean_image.wcs = WCS(header) # use the wcs coord of the first input
			clean_image.wcs = header # use the wcs coord of the first input

	# crop array to be a uniform shape (2048x2048 square)

	# check the rotation angle on the sky

	wcs = WCS(clean_image.wcs)
	rotangle = header['ROTSKYPA']

	# perform WCS transform
	if true_rot: # use PIL to rotate the image
		hdu = fits.open(infile)[0]
		array = reproject_interp(hdu, clean_image.wcs)[0] 
		print "reprojected to", WCS(clean_image.wcs)
		#im = Image.fromarray(array)
		#if header['CCDRDOUT'] == 'DUMMYBOTTOMRIGHT':
		#	rotangle = rotangle+180
		#rot_im = im.rotate(rotangle, expand=True, 
		#						resample=INTERPOLATION)
		#array = np.array(rot_im)

	else: # use numpy to rotate to nearest 90 degrees
		# find the number of requred rotations
		rotangle = int(-rotangle/10+0.5)
		k = (rotangle/9)
		# make the number positive if necessary
		k = (k+4) % 4
		# and finally rotate the array
		array = np.rot90(array, k=k, axes=(0,1))
	
	if crop: # Helps ISIS interpolate more accurately
		array = array[:2048,:2048]

	# get parameters
	gain = header['GAIN']
	readnoise = header['READNOIS']
	sigclip = 5.0
	sigfrac = 0.3
	objlim = 5.0
	maxiter=4

	# Build the object :
	c = cosmics.cosmicsimage(array, gain=gain, 
							readnoise=readnoise, sigclip=sigclip, 
							sigfrac=sigfrac, objlim=objlim)
	# There are other options, check the manual...

	# Run the full artillery :
	c.run(maxiter=maxiter)

	
	header.update(wcs.to_header())

	# update our header to describe cleaning
	header['IC_PREF'] = 'IC CP'
	header.comments['IC_PREF'] = 'IC: Image Correct Params, CP: Cosmics Params'

	header['IC_DATE'] = date.today().isoformat()
	header.comments['IC_DATE'] = 'Date corrections were made'
	header['IC_VER'] = __version__
	header.comments['IC_VER'] = 'Correction script version number'
	header['IC_SCRPT'] = os.path.basename(__file__)
	header.comments['IC_SCRPT'] = 'Name of script used for corrections'
	header['IC_ATHR'] = __author__
	header.comments['IC_ATHR'] = 'Correction script author'
	header['IC_MOD'] = __date__
	header.comments['IC_MOD'] = 'Date of last modification to correction script'
	header['IC_MNTNR'] = __maintainer__
	header.comments['IC_MNTNR'] = 'Correction script maintainer'
	header['IC_EMAIL'] = __email__
	header.comments['IC_EMAIL'] = 'Email of current correction script maintainer'
	#header['IC_ROT'] = 'PIL.Image.rotate' if true_rot else 'numpy.rot90'
	header['IC_ROT'] = 'WCS' if true_rot else 'numpy.rot90'
	header.comments['IC_ROT'] = 'Rotation, PIL: exact, numpy: nearest 90 deg'
	header['IC_CROP'] = crop
	header.comments['IC_CROP'] = 'If the Image was cropped to 2048x2048'
	header['IC_INTRP'] = 'BICUBIC' if true_rot else 'None'
	header.comments['IC_INTRP'] = 'PIL rotation interpolation method'

	header['CP_COSMC'] = "L.A.Cosmic"
	header.comments['CP_COSMC'] = 'Package used for cosmic ray removal'
	header['CP_SGCLP'] = sigclip
	header.comments['CP_SGCLP'] = 'sigclip kwarg for cosmic ray removal'
	header['CP_SGFRC'] = sigfrac
	header.comments['CP_SGFRC'] = 'sigfrac kwarg for cosmic ray removal'
	header['CP_OBJLM'] = objlim
	header.comments['CP_OBJLM'] = 'objlim kwarg for cosmic ray removal'
	header['CP_GAIN'] = gain
	header.comments['CP_GAIN'] = 'gain kwarg for cosmic ray removal'
	header['CP_RDNSE'] = readnoise
	header.comments['CP_RDNSE'] = 'readnoise kwarg for cosmic ray removal'
	header['CP_MITR'] = maxiter
	header.comments['CP_MITR'] = 'maxiter kwarg for cosmic ray removal'

	# Write the cleaned image into a new FITS file, conserving the original header :
	cosmics.tofits(cleanfile, c.cleanarray, hdr=header, cols={'MASK':c.mask})
예제 #29
0
def reduce_data(filelist_new, filelist_masterflats, filelist_masterthars):
    if len(filelist_new) == 0:
        print("Please, choose science files to reduce first!")
    elif len(filelist_masterflats) == 0:
        print("Please, choose masterflat files first!")
    elif len(filelist_masterthars) == 0:
        print("Please, choose Thorium-Argon reference files first!")
    else:
        print("Starting reduction process...")
        extracted_science_files = []
        current_directory = os.getcwd()

        years = [
            '{:04d}'.format(year) for year in range(2005,
                                                    date.today().year + 1)
        ]
        month = ['{:02d}'.format(mon) for mon in range(1, 13)]

        for i in range(len(filelist_new)):
            trim = trim_remove_bias(filelist_new[i])
            chosen_masterflat = None

            dummyI = trim.replace(".trim_will_be_removed.fits", ".dummyI.fits")
            dummyII = trim.replace(".trim_will_be_removed.fits",
                                   ".dummyII.fits")

            if os.path.exists(dummyI):
                os.remove(dummyI)
            if os.path.exists(dummyII):
                os.remove(dummyII)

            for y in years:
                for mon in month:
                    date_check_1 = y + "_" + mon
                    date_check_2 = y + "-" + mon
                    if ((date_check_1 in trim)
                            or (date_check_2 in trim)) == True:
                        for masterflat in filelist_masterflats:
                            if ((date_check_1 in masterflat)
                                    or (date_check_2 in masterflat)) == True:
                                chosen_masterflat = masterflat

            if chosen_masterflat is None:
                print("Masterflat File not found!!")
                continue

            iraf.imarith(trim, "/", chosen_masterflat, dummyI)

            iraf.apscatter(dummyI,
                           output=dummyII,
                           interactive="No",
                           apertures="1-51",
                           references="find_orders.fits")

            clean = trim.replace(".trim_will_be_removed.fits", ".clean.fits")
            mask = trim.replace(".trim_will_be_removed.fits", ".mask.fits")

            mean_image = iraf.imstat(dummyII,
                                     Stdout=1,
                                     fields="mean",
                                     format="no")
            print(mean_image)

            if float(mean_image[0]) > 5000:
                array, header = cosmics.fromfits(dummyII)

                sigclip = 50.0
                objlim = 50.0

                c = cosmics.cosmicsimage(array,
                                         gain=0.368,
                                         readnoise=3.7,
                                         sigclip=sigclip,
                                         sigfrac=10.0,
                                         objlim=objlim)

                c.run(maxiter=0)
                cosmics.tofits(clean, c.cleanarray, header)
                cosmics.tofits(mask, c.mask, header)

            elif 5000 > float(mean_image[0]) > 1000:
                array, header = cosmics.fromfits(dummyII)
                sigclip = 20.0
                objlim = 20.0
                c = cosmics.cosmicsimage(array,
                                         gain=0.368,
                                         readnoise=3.7,
                                         sigclip=sigclip,
                                         sigfrac=4.0,
                                         objlim=objlim)

                c.run(maxiter=2)
                cosmics.tofits(clean, c.cleanarray, header)
                cosmics.tofits(mask, c.mask, header)
            else:
                array, header = cosmics.fromfits(dummyII)

                sigclip = 5.0
                objlim = 5.0

                c = cosmics.cosmicsimage(array,
                                         gain=0.368,
                                         readnoise=3.7,
                                         sigclip=sigclip,
                                         sigfrac=1.8,
                                         objlim=objlim)

                c.run(maxiter=2)
                cosmics.tofits(clean, c.cleanarray, header)
                cosmics.tofits(mask, c.mask, header)

            extract = trim.replace(".trim_will_be_removed.fits",
                                   ".extracted.fits")
            extracted_science_files.append(extract)

            iraf.apall(clean,
                       output=extract,
                       references="find_orders",
                       profiles="find_orders",
                       apertures="1-51")
            #    iraf.apall(clean, output=extract, references= "find_orders", profiles= "find_orders", apertures = "3-50" )
            #    iraf.apall(clean, output=extract, references= "find_orders", profiles= "find_orders", apertures = "3-50" )
            os.remove(dummyI)
            os.remove(dummyII)
            os.remove(trim)

        write_reftable(filelist_new, filelist_masterthars)

        thar_directory = os.path.dirname(filelist_masterthars[0])

        if thar_directory == os.path.dirname(filelist_new[0]):
            pass
        else:
            remove_file(thar_directory, "science.lis")
            remove_file(thar_directory, "reftable.dat")

            shutil.move("science.lis", thar_directory)
            shutil.move("reftable.dat", thar_directory)
        os.chdir(thar_directory)

        iraf.refspectra("@science.lis",
                        references="reftable.dat",
                        ignoreaps="Yes",
                        sort="",
                        group="",
                        override="yes",
                        confirm="no",
                        assign="yes")
        iraf.dispcor("@science.lis", output="@science.lis")

        if thar_directory == os.path.dirname(filelist_new[0]):
            pass
        else:
            remove_file(current_directory, "science.lis")
            remove_file(current_directory, "reftable.dat")

            shutil.move("science.lis", current_directory)
            shutil.move("reftable.dat", current_directory)
        os.chdir(current_directory)

        normalize_and_merge(extracted_science_files)

        print("Success! Reduction process complete.")