def __init__(self, Cg=None, Cn=None, G=None, R=None, rank=1, Cr=None, S_R=None, U_R=None): """ Args: Cg: Limix covariance matrix for Cg (dimension dim_c) Cn: Limix covariance matrix for Cn (dimension dim_c) G: [dim_r, rank_r] numpy covariance matrix for G R: [dim_r, dim_r] numpy semidemidefinite covariance matrix for R rank: rank of column low-rank covariance (default = 1) Cr: Limix covariance matrix for Cr (optional). If not specified, a low-rank covariance matrix is considered S_R: N vector of eigenvalues of R U_R: [N, N] eigenvector matrix of R """ Covariance.__init__(self) self._Cr_act = True self._Cg_act = True self._Cn_act = True self.setColCovars(Cg=Cg, Cn=Cn, rank=rank, Cr=None) self.setR(R=R, S_R=S_R, U_R=U_R) self.G = G self.dim = self.dim_c * self.dim_r self._calcNumberParams() self._use_to_predict = False
def __init__(self, dim, rank = 1): """ Args: dim: dimension of the low-rank covariance rank: rank of the low-rank covariance """ Covariance.__init__(self) self.initialize(dim, rank)
def __init__(self, dim, rank=1): """ Args: dim: dimension of the low-rank covariance rank: rank of the low-rank covariance """ Covariance.__init__(self) self.initialize(dim, rank)
def __init__(self, kinship, design, kinship_cm = None, kinship_cross = None, jitter = 1e-4): if kinship_cm is None: kinship_cm = kinship if kinship_cross is None: kinship_cross = kinship ff_dim = 2 self.covff = FreeFormCov(ff_dim, jitter = 1e-4) self._K = kinship self._ZK = sp.dot(design, kinship_cross.T) self._KZ = sp.dot(kinship_cross, design.T) self._ZKZ = sp.dot(design, sp.dot(kinship_cm, design.T)) Covariance.__init__(self, kinship.shape[0])
def __init__(self, *covars): """ Args: covars: covariances to be considered in the sum """ Covariance.__init__(self) self.dim = None self.covars = [] for covar in covars: self.addCovariance(covar) covar.register(self.clear_all)
def __init__(self, C, R, Iok=None): """ Args: C: column LIMIX covariance R: row numpy covariance matrix """ Covariance.__init__(self) self._C = C self._R = R self.dim = C.dim * R.shape[0] self.Iok = Iok C.register(self.clear_all)
def __init__(self, dim, jitter=1e-4): """ Args: dim: dimension of the free-form covariance jitter: extent of diagonal offset which is added for numerical stability (default value: 1e-4) """ Covariance.__init__(self, dim) self._K_act = True self._calcNumberParams() self.dim = dim self.params = sp.zeros(self.n_params) self.idx_r, self.idx_c = sp.tril_indices(self.dim) self.set_jitter(jitter)
def __init__(self, Cn = None, G = None, rank = 1): """ Args: Cn: Limix covariance matrix for Cn (dimension dim_c) G: [dim_r, rank_r] numpy covariance matrix for G rank: rank of column low-rank covariance (default = 1) """ Covariance.__init__(self) self._Cr_act = True self._Cn_act = True self.setColCovars(Cn, rank = rank) self.G = G self.dim = self.dim_c * self.dim_r self._use_to_predict = False
def __init__(self, Cn=None, G=None, rank=1): """ Args: Cn: Limix covariance matrix for Cn (dimension dim_c) G: [dim_r, rank_r] numpy covariance matrix for G rank: rank of column low-rank covariance (default = 1) """ Covariance.__init__(self) self._Cr_act = True self._Cn_act = True self.setColCovars(Cn, rank=rank) self.G = G self.dim = self.dim_c * self.dim_r self._use_to_predict = False
def __init__(self, kinship, design, kinship_cm=None, kinship_cross=None, jitter=1e-4): if kinship_cm is None: kinship_cm = kinship if kinship_cross is None: kinship_cross = kinship ff_dim = 2 self.covff = FreeFormCov(ff_dim, jitter=1e-4) self._K = kinship self._ZK = sp.dot(design, kinship_cross.T) self._KZ = sp.dot(kinship_cross, design.T) self._ZKZ = sp.dot(design, sp.dot(kinship_cm, design.T)) Covariance.__init__(self, kinship.shape[0])
def __init__(self, Cg=None, Cn=None, R=None, S_R=None, U_R=None): """ Args: Cg: Limix covariance matrix for Cg (dimension dim_c) Cn: Limix covariance matrix for Cn (dimension dim_c) R: [dim_r, dim_r] numpy semidemidefinite covariance matrix for R In alternative to R, S_R and U_R can be specified. S_R: N vector of eigenvalues of R U_R: [N, N] eigenvector matrix of R """ Covariance.__init__(self) self._Cg_act = True self._Cn_act = True self.setColCovars(Cg, Cn) self.setR(R=R, S_R=S_R, U_R=U_R) self.dim = self.dim_c * self.dim_r self._use_to_predict = False
def __init__(self, Cg = None, Cn = None, R = None, S_R = None, U_R = None): """ Args: Cg: Limix covariance matrix for Cg (dimension dim_c) Cn: Limix covariance matrix for Cn (dimension dim_c) R: [dim_r, dim_r] numpy semidemidefinite covariance matrix for R In alternative to R, S_R and U_R can be specified. S_R: N vector of eigenvalues of R U_R: [N, N] eigenvector matrix of R """ Covariance.__init__(self) self._Cg_act = True self._Cn_act = True self.setColCovars(Cg, Cn) self.setR(R=R, S_R=S_R, U_R=U_R) self.dim = self.dim_c * self.dim_r self._use_to_predict = False
def __init__(self, K0, Kcross0=None): """ Args: K0: semi-definite positive matrix that defines the fixed-form covariance Kcross0: cross covariance between training and test samples (used only for out-of-sample predictions) """ Covariance.__init__(self) self._scale_act = True self.K0 = assert_make_float_array(K0, "K0") assert_finite_array(self.K0) if Kcross0 is not None: Kcross0 = assert_make_float_array(Kcross0, "Kcross0") assert_finite_array(Kcross0) self.Kcross0 = Kcross0 self.params = np.zeros(1)
def __init__(self, X, Xstar=None): """ X: [dim, 1] input matrix Xstar: [dim_star, 1] out-of-sample input matrix """ Covariance.__init__(self) self._scale_act = True self._length_act = True X = assert_make_float_array(X, "X") assert_finite_array(X) self.X = X if Xstar is not None: Xstar = assert_make_float_array(Xstar, "Xstar") assert_finite_array(Xstar) self.Xstar = Xstar self.params = np.zeros(2)
def __init__(self): Covariance.__init__(self) self.covars = []
def __init__(self, gp): Covariance.__init__(self) self.gp = gp gp.register(self.clear_all) self.dim = gp.mean.b.shape[0]