예제 #1
0
def main():
    """Main function executed at the bottom."""
    # Get all US surge data including states.
    us_surge = Surge()

    # Set parameters
    us_surge.end_date = '4/20/20'    # set end date wanted
    us_surge.end_date = None         # get all the data available
    us_surge.ignore_last_n_days = 2  # allow for data repo to be updated

    # *************************************************************************
    # Combine all states into a country
    # *************************************************************************
    print('******************************************************************')
    print('*                             US                                 *')
    print('******************************************************************')

    print('# of states/distric: ', len(us_surge.names))
    print('# of days:           ', us_surge.dates.shape[0])

    # Plot the data
    us_surge.plot_covid_data(save=True)

    n_last_days = 7
    print('')
    print('Last %i days'%n_last_days, ' # of cumulative cases = ',
          np.sum(us_surge.cases, axis=1)[-n_last_days:])
    print('Last %i days'%n_last_days, ' # of added cases =',
          [b-a for (b, a) in
           zip(np.sum(us_surge.cases, axis=1)[-(n_last_days-1):],
               np.sum(us_surge.cases, axis=1)[-n_last_days:-1])])
    print('')

    # Fit data to model function
    param_vec = us_surge.fit_data()
    print('')

    # Plot the fit data to model function of combined US data
    us_surge.plot_covid_nlfit(param_vec, save=True, plot_prime=True,
                              plot_double_prime=True)

    # Report critical times
    (tcc, dtc) = us_surge.report_critical_times(param_vec, verbose=True)

    # Report errors
    us_surge.report_error_analysis(param_vec, tcc, dtc)

    # 60-day look-ahead
    n_prediction_days = 60

    last_day = us_surge.dates.size
    total_deaths_predicted = int(us_surge.sigmoid_func(n_prediction_days +
                                                       last_day, param_vec))

    print('')
    print('Estimated cumulative deaths in %s days from %s = %6i'%
          (n_prediction_days, us_surge.dates[-1], total_deaths_predicted))
    print('# of cumulative deaths today, %s               = %6i'%
          (us_surge.dates[-1], int(np.sum(us_surge.cases[-1, :]))))
    print('')
예제 #2
0
def main():
    """Main function executed at the bottom."""
    # Get global surge data
    g_surge = Surge(locale='global')

    print('# of countries: ', g_surge.cases.shape[1])
    print('# of days:      ', g_surge.cases.shape[0])

    # Set parameters
    g_surge.end_date = '4/20/20'  # set end date wanted
    g_surge.end_date = None  # get all the data available
    g_surge.ignore_last_n_days = 0  # allow for data repo to be updated

    print('******************************************************************')
    print('*                        Single Country                          *')
    print('******************************************************************')

    name = 'Brazil'
    print(name)
    print('')

    # Plot the data
    g_surge.plot_covid_data(name, save=True)

    n_last_days = 7
    country_id = g_surge.names.index(name)
    print('')
    print('Last %i days' % n_last_days, ' # of cumulative cases = ',
          g_surge.cases[-n_last_days:, country_id])
    print('Last %i days' % n_last_days, ' # of added cases =', [
        b - a for (b, a) in zip(g_surge.cases[-(n_last_days - 1):, country_id],
                                g_surge.cases[-n_last_days:-1, country_id])
    ])
    print('')

    # Fit data to model function
    param_vec = g_surge.fit_data(name)
    print('')

    # Plot the fit data to model function
    g_surge.plot_covid_nlfit(param_vec,
                             name,
                             save=True,
                             plot_prime=True,
                             plot_double_prime=True)

    # Report critical times
    (tcc, dtc) = g_surge.report_critical_times(param_vec, name, verbose=True)

    # Report errors
    g_surge.report_error_analysis(param_vec, tcc, dtc, name)

    # 60-day look-ahead
    n_prediction_days = 60

    last_day = g_surge.dates.size
    total_deaths_predicted = int(
        g_surge.sigmoid_func(n_prediction_days + last_day, param_vec))

    print('')
    print('Estimated cumulative deaths in %s days from %s = %6i'%\
            (n_prediction_days, g_surge.dates[-1], total_deaths_predicted))
    print('# of cumulative deaths today, %s               = %6i'%\
            (g_surge.dates[-1], g_surge.cases[-1, g_surge.names.index(name)]))
    print('')
예제 #3
0
def main():
    """Main function executed at the bottom."""
    # Get US surge data
    us_surge = Surge()

    # Set parameters
    us_surge.end_date = '4/20/20'  # set end date wanted
    us_surge.end_date = None  # get all the data available
    us_surge.ignore_last_n_days = 0  # allow for data repo to be updated

    #**************************************************************************
    # Single State Case
    #**************************************************************************
    print('******************************************************************')
    print('*                        Single State                            *')
    print('******************************************************************')

    name = 'New Mexico'
    print(name)
    print('')

    # Plot the data
    us_surge.plot_covid_data(name, save=True)

    n_last_days = 7
    state_id = us_surge.names.index(name)
    print('')
    print('Last %i days' % n_last_days, ' # of cumulative cases = ',
          us_surge.cases[-n_last_days:, state_id])
    print('Last %i days' % n_last_days, ' # of added cases =', [
        b - a for (b, a) in zip(us_surge.cases[-(n_last_days - 1):, state_id],
                                us_surge.cases[-n_last_days:-1, state_id])
    ])
    print('')

    # Fit data to model function
    param_vec = us_surge.fit_data(name)
    print('')

    # Plot the fit data to model function
    us_surge.plot_covid_nlfit(param_vec,
                              name,
                              save=True,
                              plot_prime=True,
                              plot_double_prime=True)

    # Report critical times
    (tcc, dtc) = us_surge.report_critical_times(param_vec, name, verbose=True)

    # Report errors
    us_surge.report_error_analysis(param_vec, tcc, dtc, name)

    # 60-day look-ahead
    n_prediction_days = 60

    last_day = us_surge.dates.size
    total_deaths_predicted = int(
        us_surge.sigmoid_func(n_prediction_days + last_day, param_vec))

    print('')
    print('Estimated cumulative deaths in %s days from %s = %6i'%\
            (n_prediction_days, us_surge.dates[-1], total_deaths_predicted))
    print('# of cumulative deaths today, %s               = %6i'%\
          (us_surge.dates[-1], us_surge.cases[-1, us_surge.names.index(name)]))
    print('')