예제 #1
0
def load_craftnet_model(cuda: bool = False):
    # get craft net path
    home_path = str(Path.home())
    weight_path = os.path.join(
        home_path, ".craft_text_detector", "weights", "craft_mlt_25k.pth"
    )
    # load craft net
    craft_net = CRAFT()  # initialize

    # check if weights are already downloaded, if not download
    url = CRAFT_GDRIVE_URL
    if os.path.isfile(weight_path) is not True:
        print("Craft text detector weight will be downloaded to {}".format(weight_path))

        file_utils.download(url=url, save_path=weight_path)

    # arange device
    if cuda:
        craft_net.load_state_dict(copyStateDict(torch.load(weight_path)))

        craft_net = craft_net.cuda()
        craft_net = torch.nn.DataParallel(craft_net)
        cudnn.benchmark = False
    else:
        craft_net.load_state_dict(
            copyStateDict(torch.load(weight_path, map_location="cpu"))
        )
    craft_net.eval()
    return craft_net
예제 #2
0
def load_refinenet_model(cuda: bool = False):
    # get refine net path
    home_path = str(Path.home())
    weight_path = os.path.join(
        home_path, ".craft_text_detector", "weights", "craft_refiner_CTW1500.pth"
    )
    # load refine net
    from craft_text_detector.models.refinenet import RefineNet

    refine_net = RefineNet()  # initialize

    # check if weights are already downloaded, if not download
    url = REFINENET_GDRIVE_URL
    if os.path.isfile(weight_path) is not True:
        print("Craft text refiner weight will be downloaded to {}".format(weight_path))

        file_utils.download(url=url, save_path=weight_path)

    # arange device
    if cuda:
        refine_net.load_state_dict(copyStateDict(torch.load(weight_path)))

        refine_net = refine_net.cuda()
        refine_net = torch.nn.DataParallel(refine_net)
        cudnn.benchmark = False
    else:
        refine_net.load_state_dict(
            copyStateDict(torch.load(weight_path, map_location="cpu"))
        )
    refine_net.eval()
    return refine_net
예제 #3
0
def load_refinenet_model(
        cuda: bool = False,
        weight_path: Optional[Union[str, Path]] = None
):
    # get refine net path
    if weight_path is None:
        home_path = Path.home()
        weight_path = Path(
            home_path,
            ".craft_text_detector",
            "weights",
            "craft_refiner_CTW1500.pth"
        )
    weight_path = Path(weight_path).resolve()
    weight_path.parent.mkdir(exist_ok=True, parents=True)
    weight_path = str(weight_path)

    # load refine net
    from craft_text_detector.models.refinenet import RefineNet

    refine_net = RefineNet()  # initialize

    # check if weights are already downloaded, if not download
    url = REFINENET_GDRIVE_URL
    if not os.path.isfile(weight_path):
        print("Craft text refiner weight will be downloaded to {}".format(weight_path))

        file_utils.download(url=url, save_path=weight_path)

    # arange device
    if cuda:
        refine_net.load_state_dict(copyStateDict(torch_utils.load(weight_path)))

        refine_net = refine_net.cuda()
        refine_net = torch_utils.DataParallel(refine_net)
        torch_utils.cudnn_benchmark = False
    else:
        refine_net.load_state_dict(
            copyStateDict(torch_utils.load(weight_path, map_location="cpu"))
        )
    refine_net.eval()
    return refine_net
def load_refinenet_model(cuda: bool = False):
    '''
    Load a refine net model, the refine net is used to make better
    heatmaps based on the outputs and intermediate features of craft.
    It is also trained using the same semisupervised objective function.
    Args:   
        cuda (bool): if True, to use GPU for compute else cpu
    Returns
        A pytorch model object
    '''
    # get refine net path
    home_path = str(Path.home())
    weight_path = os.path.join(home_path, ".craft_text_detector", "weights",
                               "craft_refiner_CTW1500.pth")
    # load refine net
    from craft_text_detector.models.refinenet import RefineNet

    refine_net = RefineNet()  # initialize

    # check if weights are already downloaded, if not download
    url = REFINENET_GDRIVE_URL
    if os.path.isfile(weight_path) is not True:
        print("Craft text refiner weight will be downloaded to {}".format(
            weight_path))

        file_utils.download(url=url, save_path=weight_path)

    # arange device
    if cuda:
        refine_net.load_state_dict(copyStateDict(
            torch_utils.load(weight_path)))

        refine_net = refine_net.cuda()
        refine_net = torch_utils.DataParallel(refine_net)
        torch_utils.cudnn_benchmark = False
    else:
        refine_net.load_state_dict(
            copyStateDict(torch_utils.load(weight_path, map_location="cpu")))
    refine_net.eval()
    return refine_net
def load_craftnet_model(cuda: bool = False):
    '''
    Loads and returns the craftnet model with the state value as defined in the
    state dictionary
    Args:   
        cuda (bool): if True, to use GPU for compute else cpu
    Returns
        A pytorch model object
    '''
    # get craft net path
    home_path = str(Path.home())
    weight_path = os.path.join(home_path, ".craft_text_detector", "weights",
                               "craft_mlt_25k.pth")
    # load craft net
    from craft_text_detector.models.craftnet import CraftNet

    craft_net = CraftNet()  # initialize

    # check if weights are already downloaded, if not download
    url = CRAFT_GDRIVE_URL
    if os.path.isfile(weight_path) is not True:
        print("Craft text detector weight will be downloaded to {}".format(
            weight_path))

        file_utils.download(url=url, save_path=weight_path)

    # arange device
    if cuda:
        craft_net.load_state_dict(copyStateDict(torch_utils.load(weight_path)))

        craft_net = craft_net.cuda()
        craft_net = torch_utils.DataParallel(craft_net)
        torch_utils.cudnn_benchmark = False
    else:
        craft_net.load_state_dict(
            copyStateDict(torch_utils.load(weight_path, map_location="cpu")))
    craft_net.eval()
    return craft_net