def test_scenario7(self):
        """
            Scenario: Successfully comparing predictions with text options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I update the source with params "<options>"
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a logistic regression model with objective "<objective>"
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And the logistic regression probability for the prediction is "<probability>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"
                And the local logistic regression probability for the prediction is "<probability>"

                Examples:
                | data             | time_1  | time_2 | objective | time_3 | options | data_input                             | prediction  | probability

        """
        examples = [
            [
                'data/spam.csv', '20', '20', '180',
                '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}',
                '{"Message": "A normal message"}', 'ham', 0.9169, "000000"
            ],
            [
                'data/spam.csv', '20', '20', '180',
                '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "all", "language": "en"}}}}',
                '{"Message": "mobile"}', 'ham', 0.815, "000000"
            ],
            [
                'data/movies.csv', '20', '20', '180',
                '{"fields": {"000007": {"optype": "items", "item_analysis": {"separator": "$"}}}}',
                '{"gender": "Female", "genres": "Adventure$Action", "timestamp": 993906291, "occupation": "K-12 student", "zipcode": 59583, "rating": 3}',
                'Under 18', '0.8393', '000002'
            ]
        ]
        show_doc(self.test_scenario7, examples)
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            source_create.i_update_source_with(self, example[4])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(
                self, example[2])
            model_create.i_create_a_logistic_model_with_objective_and_parms(
                self, example[8])
            model_create.the_logistic_model_is_finished_in_less_than(
                self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[5])
            prediction_create.the_logistic_prediction_is(self, example[6])
            prediction_create.the_logistic_probability_is(self, example[7])
            prediction_compare.i_create_a_local_prediction(self, example[5])
            prediction_compare.the_local_prediction_is(self, example[6])
            prediction_compare.the_local_probability_is(self, example[7])
    def test_scenario9(self):
        """
            Scenario: Successfully comparing predictions with text options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I update the source with params "<options>"
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a logistic regression model
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"

                Examples:
                | data             | time_1  | time_2 | time_3 | options | data_input                             | prediction  |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}} |{"Message": "Mobile call"}             | ham    |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}} |{"Message": "A normal message"}        | ham     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}} |{"Message": "Mobile calls"}          | ham   |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}} |{"Message": "A normal message"}       | ham     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}} |{"Message": "Mobile call"}             | ham    |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}} |{"Message": "A normal message"}       | ham     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}} |{"Message": "FREE for 1st week! No1 Nokia tone 4 ur mob every week just txt NOKIA to 87077 Get txting and tell ur mates. zed POBox 36504 W45WQ norm150p/tone 16+"}       | ham     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}} |{"Message": "Ok"}       | ham     |


        """
        print self.test_scenario9.__doc__
        examples = [
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}}', '{"Message": "Mobile call"}', 'spam'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}}', '{"Message": "A normal message"}', 'spam'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}}', '{"Message": "Mobile calls"}', 'spam'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}}', '{"Message": "A normal message"}', 'ham'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}}', '{"Message": "Mobile call"}', 'spam'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}}', '{"Message": "A normal message"}', 'spam'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}', '{"Message": "FREE for 1st week! No1 Nokia tone 4 ur mob every week just txt NOKIA to 87077 Get txting and tell ur mates. zed POBox 36504 W45WQ norm150p/tone 16+"}', 'spam'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}', '{"Message": "Ok"}', 'ham']]
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            source_create.i_update_source_with(self, example[4])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            model_create.i_create_a_logistic_model(self)
            model_create.the_logistic_model_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[5])
            prediction_create.the_logistic_prediction_is(self, example[6])
            prediction_compare.i_create_a_local_prediction(self, example[5])
            prediction_compare.the_local_prediction_is(self, example[6])
    def test_scenario9(self):
        """
            Scenario: Successfully comparing predictions with text options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I update the source with params "<options>"
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a logistic regression model
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"

                Examples:
                | data             | time_1  | time_2 | time_3 | options | data_input                             | prediction  |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}} |{"Message": "Mobile call"}             | ham    |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}} |{"Message": "A normal message"}        | ham     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}} |{"Message": "Mobile calls"}          | ham   |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}} |{"Message": "A normal message"}       | ham     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}} |{"Message": "Mobile call"}             | ham    |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}} |{"Message": "A normal message"}       | ham     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}} |{"Message": "FREE for 1st week! No1 Nokia tone 4 ur mob every week just txt NOKIA to 87077 Get txting and tell ur mates. zed POBox 36504 W45WQ norm150p/tone 16+"}       | ham     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}} |{"Message": "Ok"}       | ham     |


        """
        print self.test_scenario9.__doc__
        examples = [
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}}', '{"Message": "Mobile call"}', 'spam'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}}', '{"Message": "A normal message"}', 'spam'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}}', '{"Message": "Mobile calls"}', 'spam'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}}', '{"Message": "A normal message"}', 'ham'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}}', '{"Message": "Mobile call"}', 'spam'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}}', '{"Message": "A normal message"}', 'spam'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}', '{"Message": "FREE for 1st week! No1 Nokia tone 4 ur mob every week just txt NOKIA to 87077 Get txting and tell ur mates. zed POBox 36504 W45WQ norm150p/tone 16+"}', 'spam'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}', '{"Message": "Ok"}', 'ham']]
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            source_create.i_update_source_with(self, example[4])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            model_create.i_create_a_logistic_model(self)
            model_create.the_logistic_model_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[5])
            prediction_create.the_logistic_prediction_is(self, example[6])
            prediction_compare.i_create_a_local_prediction(self, example[5])
            prediction_compare.the_local_prediction_is(self, example[6])
    def test_scenario12(self):
        """
            Scenario: Successfully comparing logistic regression predictions with constant fields:

                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I update the dataset with "<params>"
                And I wait until the dataset is ready less than <time_4> secs
                And I create a logistic regression model
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"

                Examples:
                | data             | time_1  | time_2 | time_3 |time_4| data_input                                 | prediction  | field_id

        """
        examples = [[
            'data/constant_field.csv', '10', '10', '50', '10',
            '{"a": 1, "b": 1, "c": 1}', 'a',
            '{"fields": {"000000": {"preferred": true}}}'
        ]]
        show_doc(self.test_scenario12, examples)

        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(
                self, example[2])
            dataset_create.i_update_dataset_with(self, example[7])
            dataset_create.the_dataset_is_finished_in_less_than(
                self, example[4])
            model_create.i_create_a_logistic_model(self)
            model_create.the_logistic_model_is_finished_in_less_than(
                self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[5])
            prediction_create.the_logistic_prediction_is(self, example[6])
            prediction_compare.i_create_a_local_prediction(self, example[5])
            prediction_compare.the_local_prediction_is(self, example[6])
    def test_scenario15(self):
        """
            Scenario: Successfully comparing predictions with text options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a logistic regression model with objective "<objective>"
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And the logistic regression probability for the prediction is "<probability>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"
                And the local logistic regression probability for the prediction is "<probability>"

                Examples:
                | data             | time_1  | time_2 | objective | time_3 | options | data_input                             | prediction  | probability

        """
        examples = [[
            'data/iris.csv', '20', '20', '180',
            '{"weight_field": "000000", "missing_numerics": false}',
            '{"petal width": 1.5, "petal length": 2, "sepal width":1}',
            'Iris-versicolor', '0.9547', '000004'
        ]]
        show_doc(self.test_scenario15, examples)
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(
                self, example[2])
            model_create.i_create_a_logistic_model_with_objective_and_parms(
                self, example[8], example[4])
            model_create.the_logistic_model_is_finished_in_less_than(
                self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[5])
            prediction_create.the_logistic_prediction_is(self, example[6])
            prediction_create.the_logistic_probability_is(self, example[7])
            prediction_compare.i_create_a_local_prediction(self, example[5])
            prediction_compare.the_local_prediction_is(self, example[6])
            prediction_compare.the_local_probability_is(self, example[7])
    def test_scenario8(self):
        """
            Scenario: Successfully comparing logistic regression predictions:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a logistic regresssion model
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"

                Examples:
                | data             | time_1  | time_2 | time_3 | data_input                                                                                 | prediction  |
                | ../data/iris.csv | 10      | 10     | 10     | {"petal width": 0.5, "petal length": 0.5, "sepal width": 0.5, "sepal length": 0.5}         | 'Iris-virginica' |
                | ../data/iris.csv | 10      | 10     | 10     | {"petal width": 2, "petal length": 6, "sepal width": 0.5, "sepal length": 0.5}             | Iris-virginica |
                | ../data/iris.csv | 10      | 10     | 10     | {"petal width": 1.5, "petal length": 4, "sepal width": 0.5, "sepal length": 0.5}           | Iris-virginica |
                | ../data/iris.csv | 10      | 10     | 10     | {"petal width": 1}                                                                         | Iris-versicolor |
                | ../data/iris_sp_chars.csv | 10      | 10     | 10     | {"pétal.length": 4, "pétal&width\u0000": 1.5, "sépal&width": 0.5, "sépal.length": 0.5}| Iris-virginica |
                | ../data/price.csv | 10      | 10     | 10     | {"Price": 1200}| Product1 |

        """
        print self.test_scenario8.__doc__
        examples = [
            ['data/iris.csv', '10', '10', '50', '{"petal width": 0.5, "petal length": 0.5, "sepal width": 0.5, "sepal length": 0.5}', 'Iris-virginica'],
            ['data/iris.csv', '10', '10', '50', '{"petal width": 2, "petal length": 6, "sepal width": 0.5, "sepal length": 0.5}', 'Iris-virginica'],
            ['data/iris.csv', '10', '10', '50', '{"petal width": 1.5, "petal length": 4, "sepal width": 0.5, "sepal length": 0.5}', 'Iris-virginica'],
            ['data/iris.csv', '10', '10', '50', '{"petal length": 1}', 'Iris-virginica'],
            ['data/iris_sp_chars.csv', '10', '10', '50', '{"pétal.length": 4, "pétal&width\u0000": 1.5, "sépal&width": 0.5, "sépal.length": 0.5}', 'Iris-virginica'],
            ['data/price.csv', '10', '10', '50', '{"Price": 1200}', 'Product2']]
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            model_create.i_create_a_logistic_model(self)
            model_create.the_logistic_model_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[4])
            prediction_create.the_logistic_prediction_is(self, example[5])
            prediction_compare.i_create_a_local_prediction(self, example[4])
            prediction_compare.the_local_prediction_is(self, example[5])
    def test_scenario8(self):
        """
            Scenario: Successfully comparing logistic regression predictions:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a logistic regresssion model
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"

                Examples:
                | data             | time_1  | time_2 | time_3 | data_input                                                                                 | prediction  |
                | ../data/iris.csv | 10      | 10     | 10     | {"petal width": 0.5, "petal length": 0.5, "sepal width": 0.5, "sepal length": 0.5}         | 'Iris-virginica' |
                | ../data/iris.csv | 10      | 10     | 10     | {"petal width": 2, "petal length": 6, "sepal width": 0.5, "sepal length": 0.5}             | Iris-virginica |
                | ../data/iris.csv | 10      | 10     | 10     | {"petal width": 1.5, "petal length": 4, "sepal width": 0.5, "sepal length": 0.5}           | Iris-virginica |
                | ../data/iris.csv | 10      | 10     | 10     | {"petal width": 1}                                                                         | Iris-versicolor |
                | ../data/iris_sp_chars.csv | 10      | 10     | 10     | {"pétal.length": 4, "pétal&width\u0000": 1.5, "sépal&width": 0.5, "sépal.length": 0.5}| Iris-virginica |
                | ../data/price.csv | 10      | 10     | 10     | {"Price": 1200}| Product1 |

        """
        print self.test_scenario8.__doc__
        examples = [
            ['data/iris.csv', '10', '10', '50', '{"petal width": 0.5, "petal length": 0.5, "sepal width": 0.5, "sepal length": 0.5}', 'Iris-virginica'],
            ['data/iris.csv', '10', '10', '50', '{"petal width": 2, "petal length": 6, "sepal width": 0.5, "sepal length": 0.5}', 'Iris-virginica'],
            ['data/iris.csv', '10', '10', '50', '{"petal width": 1.5, "petal length": 4, "sepal width": 0.5, "sepal length": 0.5}', 'Iris-virginica'],
            ['data/iris.csv', '10', '10', '50', '{"petal length": 1}', 'Iris-virginica'],
            ['data/iris_sp_chars.csv', '10', '10', '50', '{"pétal.length": 4, "pétal&width\u0000": 1.5, "sépal&width": 0.5, "sépal.length": 0.5}', 'Iris-virginica'],
            ['data/price.csv', '10', '10', '50', '{"Price": 1200}', 'Product2']]
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            model_create.i_create_a_logistic_model(self)
            model_create.the_logistic_model_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[4])
            prediction_create.the_logistic_prediction_is(self, example[5])
            prediction_compare.i_create_a_local_prediction(self, example[4])
            prediction_compare.the_local_prediction_is(self, example[5])
    def test_scenario10(self):
        """
            Scenario: Successfully comparing predictions with text options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I update the source with params "<options>"
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a logistic regression model with objective "<objective>"
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And the logistic regression probability for the prediction is "<probability>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"
                And the local logistic regression probability for the prediction is "<probability>"

                Examples:
                | data             | time_1  | time_2 | objective | time_3 | options | data_input                             | prediction  | probability
                | ../data/spam.csv | 20      | 20     | 000002 | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}} |{"Message": "A normal message"}       | ham     | 0.7645

        """
        print self.test_scenario10.__doc__
        examples = [
            ['data/spam.csv', '20', '20', '80', '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}', '{"Message": "A normal message"}', 'ham', 0.7645, "000000"],
            ['data/spam.csv', '20', '20', '80', '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "all", "language": "en"}}}}', '{"Message": "mobile"}', 'spam', 0.7175, "000000"],
            ['data/movies.csv', '20', '20', '80', '{"fields": {"000007": {"optype": "items", "item_analysis": {"separator": "$"}}}}', '{"gender": "Female", "genres": "Adventure$Action", "timestamp": 993906291, "occupation": "K-12 student", "zipcode": 59583, "rating": 3}', '25-34', '0.4135', '000002']]
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            source_create.i_update_source_with(self, example[4])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            model_create.i_create_a_logistic_model_with_objective_and_parms(self, example[8])
            model_create.the_logistic_model_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[5])
            prediction_create.the_logistic_prediction_is(self, example[6])
            prediction_create.the_logistic_probability_is(self, example[7])
            prediction_compare.i_create_a_local_prediction(self, example[5])
            prediction_compare.the_local_prediction_is(self, example[6])
            prediction_compare.the_local_probability_is(self, example[7])
    def test_scenario9(self):
        """
            Scenario: Successfully comparing predictions with text options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I update the source with params "<options>"
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a logistic regression model with objective "<objective>" and parms "<parms>"
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And the logistic regression probability for the prediction is "<probability>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"
                And the local logistic regression probability for the prediction is "<probability>"

        """
        examples = [
            ['data/iris.csv', '20', '20', '130', '{"fields": {"000000": {"optype": "categorical"}}}', '{"species": "Iris-setosa"}', '5.0', 0.0394, "000000", '{"field_codings": [{"field": "species", "coding": "dummy", "dummy_class": "Iris-setosa"}]}'],
            ['data/iris.csv', '20', '20', '130', '{"fields": {"000000": {"optype": "categorical"}}}', '{"species": "Iris-setosa"}', '5.0', 0.051, "000000", '{"balance_fields": false, "field_codings": [{"field": "species", "coding": "contrast", "coefficients": [[1, 2, -1, -2]]}]}'],
            ['data/iris.csv', '20', '20', '130', '{"fields": {"000000": {"optype": "categorical"}}}', '{"species": "Iris-setosa"}', '5.0', 0.051, "000000", '{"balance_fields": false, "field_codings": [{"field": "species", "coding": "other", "coefficients": [[1, 2, -1, -2]]}]}'],
            ['data/iris.csv', '20', '20', '130', '{"fields": {"000000": {"optype": "categorical"}}}', '{"species": "Iris-setosa"}', '5.0', 0.0417, "000000", '{"bias": false}']]
        show_doc(self.test_scenario9, examples)

        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            source_create.i_update_source_with(self, example[4])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            model_create.i_create_a_logistic_model_with_objective_and_parms(self, example[8], example[9])
            model_create.the_logistic_model_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[5])
            prediction_create.the_logistic_prediction_is(self, example[6])
            prediction_create.the_logistic_probability_is(self, example[7])
            prediction_compare.i_create_a_local_prediction(self, example[5])
            prediction_compare.the_local_prediction_is(self, example[6])
            prediction_compare.the_local_probability_is(self, example[7])
    def test_scenario9(self):
        """
            Scenario: Successfully comparing predictions with text options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I update the source with params "<options>"
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a logistic regression model with objective "<objective>" and parms "<parms>"
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And the logistic regression probability for the prediction is "<probability>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"
                And the local logistic regression probability for the prediction is "<probability>"

        """
        examples = [
            ['data/iris.csv', '20', '20', '130', '{"fields": {"000000": {"optype": "categorical"}}}', '{"species": "Iris-setosa"}', '5.0', 0.0394, "000000", '{"field_codings": [{"field": "species", "coding": "dummy", "dummy_class": "Iris-setosa"}]}'],
            ['data/iris.csv', '20', '20', '130', '{"fields": {"000000": {"optype": "categorical"}}}', '{"species": "Iris-setosa"}', '5.0', 0.0511, "000000", '{"balance_fields": false, "field_codings": [{"field": "species", "coding": "contrast", "coefficients": [[1, 2, -1, -2]]}]}'],
            ['data/iris.csv', '20', '20', '130', '{"fields": {"000000": {"optype": "categorical"}}}', '{"species": "Iris-setosa"}', '5.0', 0.0511, "000000", '{"balance_fields": false, "field_codings": [{"field": "species", "coding": "other", "coefficients": [[1, 2, -1, -2]]}]}'],
            ['data/iris.csv', '20', '20', '130', '{"fields": {"000000": {"optype": "categorical"}}}', '{"species": "Iris-setosa"}', '5.0', 0.0417, "000000", '{"bias": false}']]
        show_doc(self.test_scenario9, examples)

        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            source_create.i_update_source_with(self, example[4])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            model_create.i_create_a_logistic_model_with_objective_and_parms(self, example[8], example[9])
            model_create.the_logistic_model_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[5])
            prediction_create.the_logistic_prediction_is(self, example[6])
            prediction_create.the_logistic_probability_is(self, example[7])
            prediction_compare.i_create_a_local_prediction(self, example[5])
            prediction_compare.the_local_prediction_is(self, example[6])
            prediction_compare.the_local_probability_is(self, example[7])
    def test_scenario12(self):
        """
            Scenario: Successfully comparing logistic regression predictions with constant fields:

                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I update the dataset with "<params>"
                And I wait until the dataset is ready less than <time_4> secs
                And I create a logistic regression model
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"

                Examples:
                | data             | time_1  | time_2 | time_3 |time_4| data_input                                 | prediction  | field_id

        """
        examples = [
            ['data/constant_field.csv', '10', '10', '50', '10','{"a": 1, "b": 1, "c": 1}', 'a', '{"fields": {"000000": {"preferred": true}}}']]
        show_doc(self.test_scenario12, examples)

        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            dataset_create.i_update_dataset_with(self, example[7])
            dataset_create.the_dataset_is_finished_in_less_than(self, example[4])
            model_create.i_create_a_logistic_model(self)
            model_create.the_logistic_model_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[5])
            prediction_create.the_logistic_prediction_is(self, example[6])
            prediction_compare.i_create_a_local_prediction(self, example[5])
            prediction_compare.the_local_prediction_is(self, example[6])
예제 #12
0
    def test_scenario15(self):
        """
            Scenario: Successfully comparing predictions with text options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a logistic regression model with objective "<objective>"
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And the logistic regression probability for the prediction is "<probability>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"
                And the local logistic regression probability for the prediction is "<probability>"

                Examples:
                | data             | time_1  | time_2 | objective | time_3 | options | data_input                             | prediction  | probability

        """
        examples = [
            ['data/iris.csv', '20', '20', '180', '{"weight_field": "000000", "missing_numerics": false}', '{"petal width": 1.5, "petal length": 2, "sepal width":1}', 'Iris-versicolor', '0.9547', '000004']]
        show_doc(self.test_scenario15, examples)
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            model_create.i_create_a_logistic_model_with_objective_and_parms(self, example[8], example[4])
            model_create.the_logistic_model_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[5])
            prediction_create.the_logistic_prediction_is(self, example[6])
            prediction_create.the_logistic_probability_is(self, example[7])
            prediction_compare.i_create_a_local_prediction(self, example[5])
            prediction_compare.the_local_prediction_is(self, example[6])
            prediction_compare.the_local_probability_is(self, example[7])
    def test_scenario11(self):
        """
            Scenario: Successfully comparing predictions for logistic regression with balance_fields:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I update the source with params "<options>"
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a logistic regression model with objective "<objective>" and flags
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And the logistic regression probability for the prediction is "<probability>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"
                And the local logistic regression probability for the prediction is "<probability>"

                Examples:
                | data               | time_1  | time_2 | objective | time_3 | options | data_input                             | prediction  | probability

        """
        examples = [
            [
                'data/movies.csv', '20', '20', '180',
                '{"fields": {"000000": {"name": "user_id", "optype": "numeric"},'
                ' "000001": {"name": "gender", "optype": "categorical"},'
                ' "000002": {"name": "age_range", "optype": "categorical"},'
                ' "000003": {"name": "occupation", "optype": "categorical"},'
                ' "000004": {"name": "zipcode", "optype": "numeric"},'
                ' "000005": {"name": "movie_id", "optype": "numeric"},'
                ' "000006": {"name": "title", "optype": "text"},'
                ' "000007": {"name": "genres", "optype": "items",'
                '"item_analysis": {"separator": "$"}},'
                '"000008": {"name": "timestamp", "optype": "numeric"},'
                '"000009": {"name": "rating", "optype": "categorical"}},'
                '"source_parser": {"separator": ";"}}',
                '{"timestamp": "999999999"}', '4', 0.4028, "000009",
                '{"balance_fields": false}'
            ],
            [
                'data/movies.csv', '20', '20', '180',
                '{"fields": {"000000": {"name": "user_id", "optype": "numeric"},'
                ' "000001": {"name": "gender", "optype": "categorical"},'
                ' "000002": {"name": "age_range", "optype": "categorical"},'
                ' "000003": {"name": "occupation", "optype": "categorical"},'
                ' "000004": {"name": "zipcode", "optype": "numeric"},'
                ' "000005": {"name": "movie_id", "optype": "numeric"},'
                ' "000006": {"name": "title", "optype": "text"},'
                ' "000007": {"name": "genres", "optype": "items",'
                '"item_analysis": {"separator": "$"}},'
                '"000008": {"name": "timestamp", "optype": "numeric"},'
                '"000009": {"name": "rating", "optype": "categorical"}},'
                '"source_parser": {"separator": ";"}}',
                '{"timestamp": "999999999"}', '4', 0.2622, "000009",
                '{"normalize": true}'
            ],
            [
                'data/movies.csv', '20', '20', '180',
                '{"fields": {"000000": {"name": "user_id", "optype": "numeric"},'
                ' "000001": {"name": "gender", "optype": "categorical"},'
                ' "000002": {"name": "age_range", "optype": "categorical"},'
                ' "000003": {"name": "occupation", "optype": "categorical"},'
                ' "000004": {"name": "zipcode", "optype": "numeric"},'
                ' "000005": {"name": "movie_id", "optype": "numeric"},'
                ' "000006": {"name": "title", "optype": "text"},'
                ' "000007": {"name": "genres", "optype": "items",'
                '"item_analysis": {"separator": "$"}},'
                '"000008": {"name": "timestamp", "optype": "numeric"},'
                '"000009": {"name": "rating", "optype": "categorical"}},'
                '"source_parser": {"separator": ";"}}',
                '{"timestamp": "999999999"}', '4', 0.2622, "000009",
                '{"balance_fields": true, "normalize": true}'
            ]
        ]
        show_doc(self.test_scenario11, examples)
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            source_create.i_update_source_with(self, example[4])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(
                self, example[2])
            model_create.i_create_a_logistic_model_with_objective_and_parms(
                self, example[8], example[9])
            model_create.the_logistic_model_is_finished_in_less_than(
                self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[5])
            prediction_create.the_logistic_prediction_is(self, example[6])
            prediction_create.the_logistic_probability_is(self, example[7])
            prediction_compare.i_create_a_local_prediction(self, example[5])
            prediction_compare.the_local_prediction_is(self, example[6])
            prediction_compare.the_local_probability_is(self, example[7])
    def test_scenario11(self):
        """
            Scenario: Successfully comparing predictions for logistic regression with balance_fields:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I update the source with params "<options>"
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a logistic regression model with objective "<objective>" and flags
                And I wait until the logistic regression model is ready less than <time_3> secs
                And I create a local logistic regression model
                When I create a logistic regression prediction for "<data_input>"
                Then the logistic regression prediction is "<prediction>"
                And the logistic regression probability for the prediction is "<probability>"
                And I create a local logistic regression prediction for "<data_input>"
                Then the local logistic regression prediction is "<prediction>"
                And the local logistic regression probability for the prediction is "<probability>"

                Examples:
                | data               | time_1  | time_2 | objective | time_3 | options | data_input                             | prediction  | probability

        """
        examples = [
            ['data/movies.csv', '20', '20', '180', '{"fields": {"000000": {"name": "user_id", "optype": "numeric"},'
                                                  ' "000001": {"name": "gender", "optype": "categorical"},'
                                                  ' "000002": {"name": "age_range", "optype": "categorical"},'
                                                  ' "000003": {"name": "occupation", "optype": "categorical"},'
                                                  ' "000004": {"name": "zipcode", "optype": "numeric"},'
                                                  ' "000005": {"name": "movie_id", "optype": "numeric"},'
                                                  ' "000006": {"name": "title", "optype": "text"},'
                                                  ' "000007": {"name": "genres", "optype": "items",'
                                                  '"item_analysis": {"separator": "$"}},'
                                                  '"000008": {"name": "timestamp", "optype": "numeric"},'
                                                  '"000009": {"name": "rating", "optype": "categorical"}},'
                                                  '"source_parser": {"separator": ";"}}', '{"timestamp": "999999999"}', '4', 0.3231, "000009", '{"balance_fields": false}'],
            ['data/movies.csv', '20', '20', '180', '{"fields": {"000000": {"name": "user_id", "optype": "numeric"},'
                                                  ' "000001": {"name": "gender", "optype": "categorical"},'
                                                  ' "000002": {"name": "age_range", "optype": "categorical"},'
                                                  ' "000003": {"name": "occupation", "optype": "categorical"},'
                                                  ' "000004": {"name": "zipcode", "optype": "numeric"},'
                                                  ' "000005": {"name": "movie_id", "optype": "numeric"},'
                                                  ' "000006": {"name": "title", "optype": "text"},'
                                                  ' "000007": {"name": "genres", "optype": "items",'
                                                  '"item_analysis": {"separator": "$"}},'
                                                  '"000008": {"name": "timestamp", "optype": "numeric"},'
                                                  '"000009": {"name": "rating", "optype": "categorical"}},'
                                                  '"source_parser": {"separator": ";"}}', '{"timestamp": "999999999"}', '4', 0.2622, "000009", '{"normalize": true}'],
            ['data/movies.csv', '20', '20', '180', '{"fields": {"000000": {"name": "user_id", "optype": "numeric"},'
                                                  ' "000001": {"name": "gender", "optype": "categorical"},'
                                                  ' "000002": {"name": "age_range", "optype": "categorical"},'
                                                  ' "000003": {"name": "occupation", "optype": "categorical"},'
                                                  ' "000004": {"name": "zipcode", "optype": "numeric"},'
                                                  ' "000005": {"name": "movie_id", "optype": "numeric"},'
                                                  ' "000006": {"name": "title", "optype": "text"},'
                                                  ' "000007": {"name": "genres", "optype": "items",'
                                                  '"item_analysis": {"separator": "$"}},'
                                                  '"000008": {"name": "timestamp", "optype": "numeric"},'
                                                  '"000009": {"name": "rating", "optype": "categorical"}},'
                                                  '"source_parser": {"separator": ";"}}', '{"timestamp": "999999999"}', '4', 0.2622, "000009", '{"balance_fields": true, "normalize": true}']]
        show_doc(self.test_scenario11, examples)
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            source_create.i_update_source_with(self, example[4])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            model_create.i_create_a_logistic_model_with_objective_and_parms(self, example[8], example[9])
            model_create.the_logistic_model_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_logistic_model(self)
            prediction_create.i_create_a_logistic_prediction(self, example[5])
            prediction_create.the_logistic_prediction_is(self, example[6])
            prediction_create.the_logistic_probability_is(self, example[7])
            prediction_compare.i_create_a_local_prediction(self, example[5])
            prediction_compare.the_local_prediction_is(self, example[6])
            prediction_compare.the_local_probability_is(self, example[7])