def main(): benchmark.benchmark( get_X_y=functools.partial(stream.iter_sklearn_dataset, datasets.load_boston()), n=506, get_pp=preprocessing.StandardScaler, models=[ ('creme', 'LinReg', linear_model.LinearRegression(optimizer=optim.VanillaSGD(0.01), l2=0.)), ('creme', 'GLM', linear_model.GLMRegressor(optimizer=optim.VanillaSGD(0.01), l2=0.)), ('creme', 'GLM detrend', meta.Detrender( linear_model.GLMRegressor(optimizer=optim.VanillaSGD(0.01), l2=0., intercept_lr=0.))), ('sklearn', 'SGD', compat.CremeRegressorWrapper( sklearn_estimator=sk_linear_model.SGDRegressor( learning_rate='constant', eta0=0.01, fit_intercept=True, penalty='none'), )), ], get_metric=metrics.MSE)
def main(): def add_hour(x): x['hour'] = x['moment'].hour return x benchmark.benchmark( get_X_y=datasets.fetch_bikes, n=182470, get_pp=lambda: (compose.Whitelister('clouds', 'humidity', 'pressure', 'temperature', 'wind') + (add_hour | feature_extraction.TargetAgg(by=['station', 'hour'], how=stats.Mean()) ) | preprocessing.StandardScaler()), models=[ # ('creme', 'LinReg', linear_model.LinearRegression( # optimizer=optim.VanillaSGD(0.01), # l2=0. # )), ('creme', 'GLM', linear_model.GLMRegressor(optimizer=optim.VanillaSGD(0.01), l2=0.)), ('creme', 'GLM', meta.Detrender( linear_model.GLMRegressor(optimizer=optim.VanillaSGD(0.01), l2=0.))), # ('sklearn', 'SGD', compat.CremeRegressorWrapper( # sklearn_estimator=sk_linear_model.SGDRegressor( # learning_rate='constant', # eta0=0.01, # fit_intercept=True, # penalty='none' # ), # )), # ('sklearn', 'SGD no intercept', compat.CremeRegressorWrapper( # sklearn_estimator=sk_linear_model.SGDRegressor( # learning_rate='constant', # eta0=0.01, # fit_intercept=False, # penalty='none' # ), # )), ], get_metric=metrics.MSE)
if (opt == "AdaBound"): optimizer = optim.AdaBound(lr, beta_1, beta_2, eps, gamma, final_lr) elif (opt == "AdaDelta"): optimizer = optim.AdaDelta(rho, eps) elif (opt == "AdaGrad"): optimizer = optim.AdaGrad(lr, eps) elif (opt == "Adam"): optimizer = optim.Adam(lr, beta_1, beta_2, eps) elif (opt == "FTRLProximal"): optimizer = optim.FTRLProximal(alpha, beta, l1, l2) elif (opt == "Momentum"): optimizer = optim.Momentum(lr, rho) elif (opt == "RMSProp"): optimizer = optim.RMSProp(lr, rho, eps) elif (opt == "VanillaSGD"): optimizer = optim.VanillaSGD(lr) elif (opt == "NesterovMomentum"): optimizer = optim.NesterovMomentum(lr, rho) else: optimizer = None output = {} while True: #wait request data = input() if (init == 0): MNlog_reg = linear_model.SoftmaxRegression(optimizer, l2=l2) init = 1
def main(): benchmark.benchmark( get_X_y=datasets.fetch_electricity, n=45312, get_pp=preprocessing.StandardScaler, models=[ # ('No-change', 'No-change', dummy.NoChangeClassifier()), ('creme', 'Logistic regression', linear_model.LogisticRegression(optimizer=optim.VanillaSGD(0.05), l2=0, intercept_lr=0.05)), # ('creme', 'PA-I', linear_model.PAClassifier(C=1, mode=1)), # ('creme', 'PA-II', linear_model.PAClassifier(C=1, mode=2)), ('sklearn', 'Logistic regression', compat.CremeClassifierWrapper( sklearn_estimator=sk_linear_model.SGDClassifier( loss='log', learning_rate='constant', eta0=0.05, penalty='none'), classes=[False, True])), # ('sklearn', 'PA-I', compat.CremeClassifierWrapper( # sklearn_estimator=sk_linear_model.PassiveAggressiveClassifier( # C=1, # loss='hinge' # ), # classes=[False, True] # )), # ('sklearn', 'PA-II', compat.CremeClassifierWrapper( # sklearn_estimator=sk_linear_model.PassiveAggressiveClassifier( # C=1, # loss='squared_hinge' # ), # classes=[False, True] # )), # ('sklearn', 'Logistic regression NI', compat.CremeClassifierWrapper( # sklearn_estimator=sk_linear_model.SGDClassifier( # loss='log', # learning_rate='constant', # eta0=0.01, # fit_intercept=True, # penalty='none' # ), # classes=[False, True] # )), # ('sklearn', 'PA-I NI', compat.CremeClassifierWrapper( # sklearn_estimator=sk_linear_model.PassiveAggressiveClassifier( # C=1, # loss='hinge', # fit_intercept=False # ), # classes=[False, True] # )), # ('sklearn', 'PA-II NI', compat.CremeClassifierWrapper( # sklearn_estimator=sk_linear_model.PassiveAggressiveClassifier( # C=1, # loss='squared_hinge', # fit_intercept=False # ), # classes=[False, True] # )), ], get_metric=metrics.Accuracy)
preprocessing.StandardScaler(), compat.CremeClassifierWrapper( sklearn_estimator=PassiveAggressiveClassifier(), classes=[False, True] ) ]), 'No-change classifier': dummy.NoChangeClassifier(), 'Passive-aggressive II': compose.Pipeline([ preprocessing.StandardScaler(), linear_model.PAClassifier(C=1, mode=2) ]), 'Logistic regression w/ VanillaSGD': compose.Pipeline([ preprocessing.StandardScaler(), linear_model.LogisticRegression( optimizer=optim.VanillaSGD( lr=optim.OptimalLR() ) ) ]), 'Logistic regression w/ Adam': compose.Pipeline([ preprocessing.StandardScaler(), linear_model.LogisticRegression(optim.Adam(optim.OptimalLR())) ]), 'Logistic regression w/ AdaGrad': compose.Pipeline([ preprocessing.StandardScaler(), linear_model.LogisticRegression(optim.AdaGrad(optim.OptimalLR())) ]), 'Logistic regression w/ RMSProp': compose.Pipeline([ preprocessing.StandardScaler(), linear_model.LogisticRegression(optim.RMSProp(optim.OptimalLR())) ])
def main(): benchmark.benchmark( get_X_y=functools.partial(stream.iter_sklearn_dataset, datasets.load_breast_cancer()), n=569, get_pp=preprocessing.StandardScaler, models=[ ('creme', 'Log reg', linear_model.LogisticRegression( optimizer=optim.VanillaSGD(0.01), l2=0, intercept_lr=0.01 )), ('sklearn', 'SGD', compat.CremeClassifierWrapper( sklearn_estimator=sk_linear_model.SGDClassifier( loss='log', learning_rate='constant', eta0=0.01, penalty='none' ), classes=[False, True] )), ('creme', 'PA-I', linear_model.PAClassifier( C=0.01, mode=1, fit_intercept=True )), ('sklearn', 'PA-I', compat.CremeClassifierWrapper( sklearn_estimator=sk_linear_model.PassiveAggressiveClassifier( C=0.01, loss='hinge', fit_intercept=True ), classes=[False, True] )), # ('creme', 'PA-I', linear_model.PAClassifier(C=1, mode=1)), # ('creme', 'PA-II', linear_model.PAClassifier(C=1, mode=2)), # ('sklearn', 'PA-I', compat.CremeClassifierWrapper( # sklearn_estimator=sk_linear_model.PassiveAggressiveClassifier( # C=1, # loss='hinge' # ), # classes=[False, True] # )), # ('sklearn', 'PA-II', compat.CremeClassifierWrapper( # sklearn_estimator=sk_linear_model.PassiveAggressiveClassifier( # C=1, # loss='squared_hinge' # ), # classes=[False, True] # )), # ('sklearn', 'Logistic regression NI', compat.CremeClassifierWrapper( # sklearn_estimator=sk_linear_model.SGDClassifier( # loss='log', # learning_rate='constant', # eta0=0.01, # fit_intercept=True, # penalty='none' # ), # classes=[False, True] # )), # ('sklearn', 'PA-I NI', compat.CremeClassifierWrapper( # sklearn_estimator=sk_linear_model.PassiveAggressiveClassifier( # C=1, # loss='hinge', # fit_intercept=False # ), # classes=[False, True] # )), # ('sklearn', 'PA-II NI', compat.CremeClassifierWrapper( # sklearn_estimator=sk_linear_model.PassiveAggressiveClassifier( # C=1, # loss='squared_hinge', # fit_intercept=False # ), # classes=[False, True] # )), ], get_metric=metrics.Accuracy )
'total_mastery_points_ratio': total_points_ratio, 'rank_ratio': rank_ratio } MODELS = { 'v0': (compose.FuncTransformer(process_match) | compose.TransformerUnion([ compose.Whitelister( 'champion_mastery_points_ratio', 'total_mastery_points_ratio', 'rank_ratio', ), preprocessing.OneHotEncoder('mode', sparse=False), preprocessing.OneHotEncoder('type', sparse=False) ]) | preprocessing.StandardScaler() | linear_model.LinearRegression(optim.VanillaSGD(0.005))) } class Command(base.BaseCommand): def handle(self, *args, **options): print(f'Adding models with creme version {creme.__version__}') for name, pipeline in MODELS.items(): if models.CremeModel.objects.filter(name=name).exists(): print(f'\t{name} has already been added') continue models.CremeModel(name=name, pipeline=pipeline).save()