예제 #1
0
파일: agent.py 프로젝트: JimZhang37/DDPG
class DDPG():
    def __init__(self, task, sess):
        self.sess = sess
        self.env = task
        self.state_size = task.state_size
        self.action_size = task.action_size
        self.action_low = task.action_low
        self.action_high = task.action_high

        self.actor_lr = 0.0001
        self.tau = 0.001
        self.minibatch_size = 64
        self.critic_lr = 0.001
        self.gamma = 0.99
        self.buffer_size = 1000000
        self.random_seed = 1234
        self.summary_dir = "/"
        #self.max_episode = 100
        #self.max_episode_len = 100
        self.mu = 0

        self.actor = ActorNetwork(self.sess, self.state_size, self.action_size,
                                  self.action_low, self.action_high,
                                  self.actor_lr, self.tau, self.minibatch_size)

        self.critic = CriticNetwork(self.sess, self.state_size,
                                    self.action_size, self.critic_lr, self.tau,
                                    self.gamma,
                                    self.actor.get_num_trainable_vars())

        # Initialize replay memory
        self.replay_buffer = ReplayBuffer(self.buffer_size, self.random_seed)
        self.sess.run(tf.global_variables_initializer())
        self.actor.update_target_network()
        self.critic.update_target_network()

        self.noise = OUNoise(self.action_size, self.mu)

        self.sess.run(tf.global_variables_initializer())

    def reset_episode(self):
        #self.actor_noise.reset()
        state = self.env.reset()
        self.last_state = state
        self.ep_ave_max_q = 0
        self.ep_reward = 0
        return state

    def step(self, s, a, r, terminal, s2):
        # Save experience / reward
        #self.memory.add(self.last_state, action, reward, next_state, done)
        #summary_ops, summary_vars = self.build_summaries()
        self.replay_buffer.add(np.reshape(s, (self.actor.s_dim, )),
                               np.reshape(a, (self.actor.a_dim, )), r,
                               terminal, np.reshape(s2, (self.actor.s_dim, )))
        # Learn, if enough samples are available in memory
        if self.replay_buffer.size() > self.minibatch_size:

            s_batch, a_batch, r_batch, t_batch, s2_batch = self.replay_buffer.sample_batch(
                self.minibatch_size)
            #self.train(s_batch, a_batch, r_batch, t_batch, s2_batch)
            target_q = self.critic.predict_target(
                s2_batch, self.actor.predict_target(s2_batch))

            y_i = []
            for k in range(self.minibatch_size):
                if t_batch[k]:
                    y_i.append(r_batch[k])
                else:
                    y_i.append(r_batch[k] + self.critic.gamma * target_q[k])

                    # Update the critic given the targets
            predicted_q_value, _ = self.critic.train(
                s_batch, a_batch, np.reshape(y_i, (self.minibatch_size, 1)))

            #self.ep_ave_max_q += np.amax(predicted_q_value)

            # Update the actor policy using the sampled gradient
            a_outs = self.actor.predict(s_batch)
            grads = self.critic.action_gradients(s_batch, a_outs)
            self.actor.train(s_batch, grads[0])

            # Update target networks
            self.actor.update_target_network()
            self.critic.update_target_network()

        # Roll over last state and action
        self.last_state = s2
        '''
        self.ep_reward +=r
        
        if terminal:
            
            summary_str = self.sess.run(
            , feed_dict={summary_vars[0]: self.ep_reward, summary_vars[1]: self.ep_ave_max_q / float(j)})

            writer.add_summary(summary_str, i)
            #writer.flush()
            
            print('| Reward: {:d} |Qmax: {:.4f}'.format(int(self.ep_reward), \
                             (self.ep_ave_max_q / float(j))))
             '''

    def act(self, states):
        """Returns actions for given state(s) as per current policy."""
        states = np.reshape(states, [-1, self.state_size])

        actions = self.actor.predict(states)[0]
        #actornoises = OrnsteinUhlenbeckActionNoise(mu=np.zeros(self.action_size))
        #print(actions)

        return actions + self.noise.sample()  # add some noise for exploration

    def train(self, s_batch, a_batch, r_batch, t_batch, s2_batch):

        target_q = self.critic.predict_target(
            s2_batch, self.actor.predict_target(s2_batch))

        y_i = []
        for k in range(self.minibatch_size):
            if t_batch[k]:
                y_i.append(r_batch[k])
            else:
                y_i.append(r_batch[k] + self.critic.gamma * target_q[k])

                # Update the critic given the targets
        predicted_q_value, _ = self.critic.train(
            s_batch, a_batch, np.reshape(y_i, (self.minibatch_size, 1)))

        #self.ep_ave_max_q += np.amax(predicted_q_value)

        # Update the actor policy using the sampled gradient
        a_outs = self.actor.predict(s_batch)
        grads = self.critic.action_gradients(s_batch, a_outs)
        self.actor.train(s_batch, grads[0])

        # Update target networks
        self.actor.update_target_network()
        self.critic.update_target_network()

    def build_summaries(self):
        episode_reward = tf.Variable(0.)
        tf.summary.scalar("Reward", episode_reward)
        episode_ave_max_q = tf.Variable(0.)
        tf.summary.scalar("Qmax Value", episode_ave_max_q)

        summary_vars = [episode_reward, episode_ave_max_q]
        summary_ops = tf.summary.merge_all()

        return summary_ops, summary_vars
예제 #2
0
K.set_session(sess)

actor = ActorNetwork(sess, num_state, num_action, batch_size, tau, actor_alpha)
critic = CriticNetwork(sess, num_state, num_action, batch_size, tau, critic_alpha)
buff = ReplayBuffer(buffer_size)

with open('actor_model.json', 'w') as json_file:
    json_file.write(actor.model.to_json())
with open('critic_model.json', 'w') as json_file:
    json_file.write(critic.model.to_json())

print 'start training'
best_r = -10000

actor.update_target_network()
critic.update_target_network()

try:
    for i in range(num_episode):
        total_reward = 0
        s = env.reset()
        s_t = np.hstack((s[0], s[1], s[2]))
        while True:
            #epsilon *= 0.995
            loss = 0.0
            #epsilon -= 1.0/10000.0
            a = actor.model.predict(s_t.reshape(1,s_t.shape[0]))
            noise = Ornstein_Uhlenbeck(a[0])
            #noise = max(epsilon,0) * noise.function(a[0], 0.0, 0.15, 0.3) 
#            a = a[0] + noise
            a = a[0] + noise()[0]
예제 #3
0
def trainer(epochs=1000, MINIBATCH_SIZE=40, GAMMA = 0.99, epsilon=1.0, min_epsilon=0.01, BUFFER_SIZE=10000, train_indicator=True, render=False):
    with tf.Session() as sess:


        # configuring environment
        env = gym.make(ENV_NAME)
        # configuring the random processes
        np.random.seed(RANDOM_SEED)
        tf.set_random_seed(RANDOM_SEED)
        env.seed(RANDOM_SEED)
        # info of the environment to pass to the agent
        state_dim = env.observation_space.shape[0]
        action_dim = env.action_space.shape[0]
        action_bound = np.float64(10) # I choose this number since the mountain continuos does not have a boundary
        # Creating agent
        ruido = OUNoise(action_dim, mu = 0.4) # this is the Ornstein-Uhlenbeck Noise
        actor = ActorNetwork(sess, state_dim, action_dim, action_bound, ACTOR_LEARNING_RATE, TAU, DEVICE)
        critic = CriticNetwork(sess, state_dim, action_dim, CRITIC_LEARNING_RATE, TAU, actor.get_num_trainable_vars(), DEVICE)


        sess.run(tf.global_variables_initializer())

        # Initialize target network weights
        actor.update_target_network()
        critic.update_target_network()
        # Initialize replay memory
        replay_buffer = ReplayBuffer(BUFFER_SIZE, RANDOM_SEED)

        goal = 0
        max_state = -1.
        try:
            critic.recover_critic()
            actor.recover_actor()
            print('********************************')
            print('models restored succesfully')
            print('********************************')
        except:
            pass
#            print('********************************')
#            print('Failed to restore models')
#            print('********************************')


        for i in range(epochs):

            state = env.reset()
            state = np.hstack(state)
            ep_reward = 0
            ep_ave_max_q = 0
            done = False
            step = 0
            max_state_episode = -1
            epsilon -= (epsilon/EXPLORE)
            epsilon = np.maximum(min_epsilon,epsilon)


            while (not done):

                if render:
                    env.render()

                #print('step', step)
                # 1. get action with actor, and add noise
                action_original = actor.predict(np.reshape(state,(1,state_dim))) # + (10. / (10. + i))* np.random.randn(1)
                action = action_original + max(epsilon,0)*ruido.noise()


                # remove comment if you want to see a step by step update
                # print(step,'a',action_original, action,'s', state[0], 'max state', max_state_episode)

                # 2. take action, see next state and reward :
                next_state, reward, done, info = env.step(action)

                if train_indicator:
                    # 3. Save in replay buffer:
                    replay_buffer.add(np.reshape(state, (actor.s_dim,)), np.reshape(action, (actor.a_dim,)), reward,
                                      done, np.reshape(next_state, (actor.s_dim,)))

                    # Keep adding experience to the memory until
                    # there are at least minibatch size samples
                    if replay_buffer.size() > MINIBATCH_SIZE:

                        # 4. sample random minibatch of transitions:
                        s_batch, a_batch, r_batch, t_batch, s2_batch = replay_buffer.sample_batch(MINIBATCH_SIZE)

                        # Calculate targets

                        # 5. Train critic Network (states,actions, R + gamma* V(s', a')):
                        # 5.1 Get critic prediction = V(s', a')
                        # the a' is obtained using the actor prediction! or in other words : a' = actor(s')
                        target_q = critic.predict_target(s2_batch, actor.predict_target(s2_batch))

                        # 5.2 get y_t where:
                        y_i = []
                        for k in range(MINIBATCH_SIZE):
                            if t_batch[k]:
                                y_i.append(r_batch[k])
                            else:
                                y_i.append(r_batch[k] + GAMMA * target_q[k])


                        # 5.3 Train Critic!
                        predicted_q_value, _ = critic.train(s_batch, a_batch, np.reshape(y_i, (MINIBATCH_SIZE, 1)))

                        ep_ave_max_q += np.amax(predicted_q_value)

                        # 6 Compute Critic gradient (depends on states and actions)
                        # 6.1 therefore I first need to calculate the actions the current actor would take.
                        a_outs = actor.predict(s_batch)
                        # 6.2 I calculate the gradients
                        grads = critic.action_gradients(s_batch, a_outs)
                        actor.train(s_batch, grads[0])

                        # Update target networks
                        actor.update_target_network()
                        critic.update_target_network()


                state = next_state
                if next_state[0] > max_state_episode:
                    max_state_episode = next_state[0]

                ep_reward = ep_reward + reward
                step +=1

            if done:
                ruido.reset()
                if state[0] > 0.45:
                    #print('****************************************')
                    #print('got it!')
                    #print('****************************************')
                    goal += 1

            if max_state_episode > max_state:
                max_state = max_state_episode
            print('th',i+1,'n steps', step,'R:', round(ep_reward,3),'Pos', round(epsilon,3),'Efficiency', round(100.*((goal)/(i+1.)),3) )


            # print('Efficiency', 100.*((goal)/(i+1.)))


        print('*************************')
        print('now we save the model')
        critic.save_critic()
        actor.save_actor()
        print('model saved succesfuly')
        print('*************************')
예제 #4
0
def trainer(env,
            outdir,
            epochs=100,
            MINIBATCH_SIZE=64,
            GAMMA=0.99,
            epsilon=0.01,
            min_epsilon=0.01,
            BUFFER_SIZE=10000,
            train_indicator=False,
            render=False):
    tf.reset_default_graph()
    with tf.Session(config=config) as sess:

        # configuring environment
        #env = gym.make(ENV_NAME)
        # configuring the random processes
        np.random.seed(RANDOM_SEED)
        tf.set_random_seed(RANDOM_SEED)
        env.seed(RANDOM_SEED)
        # info of the environment to pass to the agent
        state_dim = env.observation_space
        action_dim = env.action_space
        action_bound = np.float64(
            1
        )  # I choose this number since the mountain continuos does not have a boundary
        # Creating agent

        # FOR the RNN
        #tf.contrib.rnn.core_rnn_cell.BasicLSTMCell from https://github.com/tensorflow/tensorflow/issues/8771
        #cell = tf.contrib.rnn.BasicLSTMCell(num_units=300,state_is_tuple=True, reuse = None)
        #cell_target = tf.contrib.rnn.BasicLSTMCell(num_units=300,state_is_tuple=True, reuse = None)
        ruido = OUNoise(action_dim,
                        mu=0.4)  # this is the Ornstein-Uhlenbeck Noise
        actor = ActorNetwork(sess, state_dim, action_dim, action_bound,
                             ACTOR_LEARNING_RATE, TAU, outdir)
        critic = CriticNetwork(sess, state_dim, action_dim,
                               CRITIC_LEARNING_RATE, TAU,
                               actor.get_num_trainable_vars(), outdir)

        #sess.run(tf.global_variables_initializer())

        # Initialize target network weights
        actor.update_target_network()
        critic.update_target_network()
        # Initialize replay memory
        replay_buffer = ReplayBuffer(BUFFER_SIZE, RANDOM_SEED)
        replay_buffer.load()

        #goal = 0
        max_state = -1.
        try:
            critic.recover_critic()
            actor.recover_actor()
            print('********************************')
            print('models restored succesfully')
            print('********************************')
        except Exception as e:
            print('********************************')
            print(e)
            print('********************************')
        #critic.recover_critic()
        #actor.recover_actor()

        for i in range(epochs):
            state = env.reset()
            #state = np.hstack(state)
            ep_reward = 0
            ep_ave_max_q = 0
            done = False
            step = 0
            max_state_episode = -1
            epsilon -= epsilon / EXPLORE
            if epsilon < min_epsilon:
                epsilon = min_epsilon
            while (not done):

                if render:
                    env.render()

                #print('step', step)
                # 1. get action with actor, and add noise

                np.set_printoptions(precision=4)
                # remove comment if you want to see a step by step update
                #print(step,'a',action_original, action,'s', state[0], 'max state', max_state_episode)

                # 2. take action, see next state and reward :
                action_original = actor.predict(
                    np.reshape(state,
                               (1, actor.s_dim
                                )))  # + (10. / (10. + i))* np.random.randn(1)
                action = action_original  #+ max(epsilon, 0) * ruido.noise()
                '''
                for j in range(action.shape[1]):
                    if abs(action[0,j]) > 1:
                        act=action[0,j]
                        action[0,j]=act/abs(act)
                    else:
                        continue
                '''
                action = np.reshape(action, (actor.a_dim, ))
                next_state, reward, done, info = env.step(action)
                if train_indicator:
                    # 3. Save in replay buffer:
                    replay_buffer.add(np.reshape(state, (actor.s_dim, )),
                                      np.reshape(action, (actor.a_dim, )),
                                      reward, done,
                                      np.reshape(next_state, (actor.s_dim, )))

                    # Keep adding experience to the memory until
                    # there are at least minibatch size samples
                    if replay_buffer.size() > MINIBATCH_SIZE:

                        # 4. sample random minibatch of transitions:
                        s_batch, a_batch, r_batch, t_batch, s2_batch = replay_buffer.sample_batch(
                            MINIBATCH_SIZE)

                        # Calculate targets

                        # 5. Train critic Network (states,actions, R + gamma* V(s', a')):
                        # 5.1 Get critic prediction = V(s', a')
                        # the a' is obtained using the actor prediction! or in other words : a' = actor(s')
                        target_q = critic.predict_target(
                            s2_batch, actor.predict_target(s2_batch), 20)

                        # 5.2 get y_t where:
                        y_i = []
                        for k in range(MINIBATCH_SIZE):
                            if t_batch[k]:
                                y_i.append(r_batch[k])
                            else:
                                y_i.append(r_batch[k] + GAMMA * target_q[k])

                        # 5.3 Train Critic!
                        predicted_q_value, _ = critic.train(
                            s_batch, a_batch,
                            np.reshape(y_i, (MINIBATCH_SIZE, 1)), 20)

                        ep_ave_max_q += np.amax(predicted_q_value)

                        # 6 Compute Critic gradient (depends on states and actions)
                        # 6.1 therefore I first need to calculate the actions the current actor would take.
                        a_outs = actor.predict(s_batch)
                        # 6.2 I calculate the gradients
                        grads = critic.action_gradients(s_batch, a_outs, 20)
                        c = np.array(grads)
                        #print(c.shape)
                        #print('...')
                        #print('...',c[0].shape)
                        #print('...')
                        actor.train(s_batch, grads[0])

                        # Update target networks
                        actor.update_target_network()
                        critic.update_target_network()
                state = next_state
                if next_state[0] > max_state_episode:
                    max_state_episode = next_state[0]

                ep_reward = ep_reward + reward
                step += 1

            if max_state_episode > max_state:
                max_state = max_state_episode

            print('th', i + 1, 'Step', step, 'Reward:', ep_reward, 'Pos',
                  next_state[0], next_state[1], 'epsilon', epsilon)
            print('*************************')
            print('now we save the model')
            critic.save_critic()
            actor.save_actor()
            print('model saved succesfuly')
            print('*************************')
            replay_buffer.save()
            #proc = Popen(['rosclean','purge'],stdout=PIPE, stdin=PIPE, stderr=PIPE,universal_newlines=True)
            #out,err = proc.communicate(input="{}\n".format("y"))
            #print('maxmimum state reach', max_state)
            #print('the reward at the end of the episode,', reward)
            #print('Efficiency', 100.*((goal)/(i+1.)))
        '''
        print('*************************')
        print('now we save the model')
        critic.save_critic()
        actor.save_actor()
        print('model saved succesfuly')
        print('*************************')
        replay_buffer.save()
        #env.close()
        '''
        sess.close()
    return 0