def createImpulseModel(self, supportFootIds, swingFootTask, JMinvJt_damping=1e-12, r_coeff=0.0): """ Action model for impulse models. An impulse model consists of describing the impulse dynamics against a set of contacts. :param supportFootIds: Ids of the constrained feet :param swingFootTask: swinging foot task :return impulse action model """ # Creating a 3D multi-contact model, and then including the supporting foot impulseModel = crocoddyl.ImpulseModelMultiple(self.state) for i in supportFootIds: supportContactModel = crocoddyl.ImpulseModel3D(self.state, i) impulseModel.addImpulse(self.rmodel.frames[i].name + "_impulse", supportContactModel) # Creating the cost model for a contact phase costModel = crocoddyl.CostModelSum(self.state, 0) if swingFootTask is not None: for i in swingFootTask: frameTranslationResidual = crocoddyl.ResidualModelFrameTranslation(self.state, i[0], i[1].translation, 0) footTrack = crocoddyl.CostModelResidual(self.state, frameTranslationResidual) costModel.addCost(self.rmodel.frames[i[0]].name + "_footTrack", footTrack, 1e7) stateWeights = np.array([1.] * 6 + [10.] * (self.rmodel.nv - 6) + [10.] * self.rmodel.nv) stateResidual = crocoddyl.ResidualModelState(self.state, self.rmodel.defaultState, 0) stateActivation = crocoddyl.ActivationModelWeightedQuad(stateWeights**2) stateReg = crocoddyl.CostModelResidual(self.state, stateActivation, stateResidual) costModel.addCost("stateReg", stateReg, 1e1) # Creating the action model for the KKT dynamics with simpletic Euler # integration scheme model = crocoddyl.ActionModelImpulseFwdDynamics(self.state, impulseModel, costModel) model.JMinvJt_damping = JMinvJt_damping model.r_coeff = r_coeff return model
def createPseudoImpulseModel(self, supportFootIds, swingFootTask): """ Action model for pseudo-impulse models. A pseudo-impulse model consists of adding high-penalty cost for the contact velocities. :param supportFootIds: Ids of the constrained feet :param swingFootTask: swinging foot task :return pseudo-impulse differential action model """ # Creating a 3D multi-contact model, and then including the supporting # foot nu = self.actuation.nu contactModel = crocoddyl.ContactModelMultiple(self.state, nu) for i in supportFootIds: supportContactModel = crocoddyl.ContactModel3D(self.state, i, np.array([0., 0., 0.]), nu, np.array([0., 50.])) contactModel.addContact(self.rmodel.frames[i].name + "_contact", supportContactModel) # Creating the cost model for a contact phase costModel = crocoddyl.CostModelSum(self.state, nu) for i in supportFootIds: cone = crocoddyl.FrictionCone(self.Rsurf, self.mu, 4, False) coneResidual = crocoddyl.ResidualModelContactFrictionCone(self.state, i, cone, nu) coneActivation = crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(cone.lb, cone.ub)) frictionCone = crocoddyl.CostModelResidual(self.state, coneActivation, coneResidual) costModel.addCost(self.rmodel.frames[i].name + "_frictionCone", frictionCone, 1e1) if swingFootTask is not None: for i in swingFootTask: frameTranslationResidual = crocoddyl.ResidualModelFrameTranslation(self.state, i[0], i[1].translation, nu) frameVelocityResidual = crocoddyl.ResidualModelFrameVelocity(self.state, i[0], pinocchio.Motion.Zero(), pinocchio.LOCAL, nu) footTrack = crocoddyl.CostModelResidual(self.state, frameTranslationResidual) impulseFootVelCost = crocoddyl.CostModelResidual(self.state, frameVelocityResidual) costModel.addCost(self.rmodel.frames[i[0]].name + "_footTrack", footTrack, 1e7) costModel.addCost(self.rmodel.frames[i[0]].name + "_impulseVel", impulseFootVelCost, 1e6) stateWeights = np.array([0.] * 3 + [500.] * 3 + [0.01] * (self.rmodel.nv - 6) + [10.] * self.rmodel.nv) stateResidual = crocoddyl.ResidualModelState(self.state, self.rmodel.defaultState, nu) stateActivation = crocoddyl.ActivationModelWeightedQuad(stateWeights**2) ctrlResidual = crocoddyl.ResidualModelControl(self.state, nu) stateReg = crocoddyl.CostModelResidual(self.state, stateActivation, stateResidual) ctrlReg = crocoddyl.CostModelResidual(self.state, ctrlResidual) costModel.addCost("stateReg", stateReg, 1e1) costModel.addCost("ctrlReg", ctrlReg, 1e-3) # Creating the action model for the KKT dynamics with simpletic Euler # integration scheme dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(self.state, self.actuation, contactModel, costModel, 0., True) if self.integrator == 'euler': model = crocoddyl.IntegratedActionModelEuler(dmodel, 0.) elif self.integrator == 'rk4': model = crocoddyl.IntegratedActionModelRK(dmodel, crocoddyl.RKType.four, 0.) elif self.integrator == 'rk3': model = crocoddyl.IntegratedActionModelRK(dmodel, crocoddyl.RKType.three, 0.) elif self.integrator == 'rk2': model = crocoddyl.IntegratedActionModelRK(dmodel, crocoddyl.RKType.two, 0.) else: model = crocoddyl.IntegratedActionModelEuler(dmodel, 0.) return model
class FrameTranslationCostSumTest(CostModelSumTestCase): ROBOT_MODEL = example_robot_data.load('icub_reduced').model ROBOT_STATE = crocoddyl.StateMultibody(ROBOT_MODEL) COST = crocoddyl.CostModelResidual( ROBOT_STATE, crocoddyl.ResidualModelFrameTranslation(ROBOT_STATE, ROBOT_MODEL.getFrameId('r_sole'), pinocchio.utils.rand(3)))
class FrameTranslationCostTest(CostModelAbstractTestCase): ROBOT_MODEL = example_robot_data.load('icub_reduced').model ROBOT_STATE = crocoddyl.StateMultibody(ROBOT_MODEL) xref = pinocchio.utils.rand(3) COST = crocoddyl.CostModelResidual( ROBOT_STATE, crocoddyl.ResidualModelFrameTranslation(ROBOT_STATE, ROBOT_MODEL.getFrameId('r_sole'), xref)) COST_DER = FrameTranslationCostModelDerived(ROBOT_STATE, frame_id=ROBOT_MODEL.getFrameId('r_sole'), translation=xref)
def createSwingFootModel(self, timeStep, supportFootIds, comTask=None, swingFootTask=None): """ Action model for a swing foot phase. :param timeStep: step duration of the action model :param supportFootIds: Ids of the constrained feet :param comTask: CoM task :param swingFootTask: swinging foot task :return action model for a swing foot phase """ # Creating a 3D multi-contact model, and then including the supporting # foot nu = self.actuation.nu contactModel = crocoddyl.ContactModelMultiple(self.state, nu) for i in supportFootIds: supportContactModel = crocoddyl.ContactModel3D( self.state, i, np.array([0., 0., 0.]), nu, np.array([0., 50.])) contactModel.addContact(self.rmodel.frames[i].name + "_contact", supportContactModel) # Creating the cost model for a contact phase costModel = crocoddyl.CostModelSum(self.state, nu) if isinstance(comTask, np.ndarray): comResidual = crocoddyl.ResidualModelCoMPosition( self.state, comTask, nu) comTrack = crocoddyl.CostModelResidual(self.state, comResidual) costModel.addCost("comTrack", comTrack, 1e6) for i in supportFootIds: cone = crocoddyl.FrictionCone(self.Rsurf, self.mu, 4, False) coneResidual = crocoddyl.ResidualModelContactFrictionCone( self.state, i, cone, nu) coneActivation = crocoddyl.ActivationModelQuadraticBarrier( crocoddyl.ActivationBounds(cone.lb, cone.ub)) frictionCone = crocoddyl.CostModelResidual(self.state, coneActivation, coneResidual) costModel.addCost(self.rmodel.frames[i].name + "_frictionCone", frictionCone, 1e1) if swingFootTask is not None: for i in swingFootTask: frameTranslationResidual = crocoddyl.ResidualModelFrameTranslation( self.state, i[0], i[1].translation, nu) footTrack = crocoddyl.CostModelResidual( self.state, frameTranslationResidual) costModel.addCost(self.rmodel.frames[i[0]].name + "_footTrack", footTrack, 1e6) stateWeights = np.array([0.] * 3 + [500.] * 3 + [0.01] * (self.rmodel.nv - 6) + [10.] * 6 + [1.] * (self.rmodel.nv - 6)) stateResidual = crocoddyl.ResidualModelState(self.state, self.rmodel.defaultState, nu) stateActivation = crocoddyl.ActivationModelWeightedQuad( stateWeights**2) ctrlResidual = crocoddyl.ResidualModelControl(self.state, nu) stateReg = crocoddyl.CostModelResidual(self.state, stateActivation, stateResidual) ctrlReg = crocoddyl.CostModelResidual(self.state, ctrlResidual) costModel.addCost("stateReg", stateReg, 1e1) costModel.addCost("ctrlReg", ctrlReg, 1e-1) lb = np.concatenate([ self.state.lb[1:self.state.nv + 1], self.state.lb[-self.state.nv:] ]) ub = np.concatenate([ self.state.ub[1:self.state.nv + 1], self.state.ub[-self.state.nv:] ]) stateBoundsResidual = crocoddyl.ResidualModelState(self.state, nu) stateBoundsActivation = crocoddyl.ActivationModelQuadraticBarrier( crocoddyl.ActivationBounds(lb, ub)) stateBounds = crocoddyl.CostModelResidual(self.state, stateBoundsActivation, stateBoundsResidual) costModel.addCost("stateBounds", stateBounds, 1e3) # Creating the action model for the KKT dynamics with simpletic Euler # integration scheme dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics( self.state, self.actuation, contactModel, costModel, 0., True) model = crocoddyl.IntegratedActionModelEuler(dmodel, timeStep) return model
DT = 1e-3 T = 250 target = np.array([0.4, 0., .4]) cameraTF = [2., 2.68, 0.54, 0.2, 0.62, 0.72, 0.22] display = crocoddyl.GepettoDisplay(robot, cameraTF=cameraTF, floor=False) robot.viewer.gui.addSphere('world/point', .05, [1., 0., 0., 1.]) # radius = .1, RGBA=1001 robot.viewer.gui.applyConfiguration('world/point', target.tolist() + [0., 0., 0., 1.]) # xyz+quaternion robot.viewer.gui.refresh() # Create the cost functions state = crocoddyl.StateMultibody(robot.model) goalResidual = crocoddyl.ResidualModelFrameTranslation( state, robot_model.getFrameId("gripper_left_joint"), target) goalTrackingCost = crocoddyl.CostModelResidual(state, goalResidual) xRegCost = crocoddyl.CostModelResidual(state, crocoddyl.ResidualModelState(state)) uRegCost = crocoddyl.CostModelResidual(state, crocoddyl.ResidualModelControl(state)) # Create cost model per each action model runningCostModel = crocoddyl.CostModelSum(state) terminalCostModel = crocoddyl.CostModelSum(state) # Then let's added the running and terminal cost functions runningCostModel.addCost("gripperPose", goalTrackingCost, 1.) runningCostModel.addCost("stateReg", xRegCost, 5e-2) runningCostModel.addCost("ctrlReg", uRegCost, 1e-5) terminalCostModel.addCost("gripperPose", goalTrackingCost, 10000.)