def __init__(self): robot = self.robot = loadTalosArm(freeFloating=True) rmodel = self.rmodel = robot.model qmin = rmodel.lowerPositionLimit qmin[:7] = -1 rmodel.lowerPositionLimit = qmin qmax = rmodel.upperPositionLimit qmax[:7] = 1 rmodel.upperPositionLimit = qmax State = self.State = StatePinocchio(rmodel) actModel = self.actModel = ActuationModelFreeFloating(rmodel) contactModel = self.contactModel = ContactModelMultiple(rmodel) contact6 = ContactModel6D(rmodel, rmodel.getFrameId(contactName), ref=pinocchio.SE3.Identity(), gains=[0., 0.]) contactModel.addContact(name='contact', contact=contact6) costModel = self.costModel = CostModelSum(rmodel, nu=actModel.nu) self.cost1 = CostModelFrameTranslation( rmodel, nu=actModel.nu, frame=rmodel.getFrameId(opPointName), ref=np.array([.5, .4, .3])) stateWeights = np.array([0] * 6 + [0.01] * (rmodel.nv - 6) + [10] * rmodel.nv) self.cost2 = CostModelState(rmodel, State, ref=State.zero(), nu=actModel.nu, activation=ActivationModelWeightedQuad( stateWeights**2)) self.cost3 = CostModelControl(rmodel, nu=actModel.nu) costModel.addCost(name="pos", weight=10, cost=self.cost1) costModel.addCost(name="regx", weight=0.1, cost=self.cost2) costModel.addCost(name="regu", weight=0.01, cost=self.cost3) self.dmodel = DifferentialActionModelFloatingInContact( rmodel, actModel, contactModel, costModel) self.model = IntegratedActionModelEuler(self.dmodel) self.data = self.model.createData() self.cd1 = self.data.differential.costs.costs['pos'] self.cd2 = self.data.differential.costs.costs['regx'] self.cd3 = self.data.differential.costs.costs['regu'] self.ddata = self.data.differential self.rdata = self.data.differential.pinocchio self.x = self.State.rand() self.q = a2m(self.x[:rmodel.nq]) self.v = a2m(self.x[rmodel.nq:]) self.u = np.random.rand(self.model.nu)
def runningModel(contactIds, effectors, com=None, integrationStep=1e-2): ''' Creating the action model for floating-base systems. A walker system is by default a floating-base system. contactIds is a list of frame Ids of points that should be in contact. effectors is a dict of key frame ids and SE3 values of effector references. ''' actModel = ActuationModelFreeFloating(rmodel) State = StatePinocchio(rmodel) # Creating a 6D multi-contact model, and then including the supporting foot contactModel = ContactModelMultiple(rmodel) for cid in contactIds: contactModel.addContact('contact%d' % cid, ContactModel6D(rmodel, cid, ref=None)) # Creating the cost model for a contact phase costModel = CostModelSum(rmodel, actModel.nu) wx = np.array([0] * 6 + [.1] * (rmodel.nv - 6) + [10] * rmodel.nv) costModel.addCost('xreg', weight=1e-1, cost=CostModelState( rmodel, State, ref=rmodel.defaultState, nu=actModel.nu, activation=ActivationModelWeightedQuad(wx))) costModel.addCost('ureg', weight=1e-4, cost=CostModelControl(rmodel, nu=actModel.nu)) for fid, ref in effectors.items(): if not isinstance(ref, SE3): ref = SE3(eye(3), a2m(ref)) costModel.addCost("track%d" % fid, weight=100., cost=CostModelFramePlacement(rmodel, fid, ref, actModel.nu)) if com is not None: costModel.addCost("com", weight=100., cost=CostModelCoM(rmodel, ref=com, nu=actModel.nu)) # Creating the action model for the KKT dynamics with simpletic Euler # integration scheme dmodel = DifferentialActionModelFloatingInContact(rmodel, actModel, contactModel, costModel) model = IntegratedActionModelEuler(dmodel) model.timeStep = integrationStep return model
# ----------------------------------------- q = pinocchio.randomConfiguration(rmodel) v = rand(rmodel.nv) x = m2a(np.concatenate([q, v])) u = m2a(rand(rmodel.nv - 6)) # ------------------------------------------------- np.set_printoptions(linewidth=400, suppress=True) State = StatePinocchio(rmodel) actModel = ActuationModelFreeFloating(State) gains = pinocchio.utils.rand(2) Mref_lf = FramePlacement(rmodel.getFrameId('LF_FOOT'), pinocchio.SE3.Random()) contactModel6 = ContactModel6D(State, Mref_lf, actModel.nu, gains) rmodel.frames[Mref_lf.frame].placement = pinocchio.SE3.Random() contactModel = ContactModelMultiple(State, actModel.nu) contactModel.addContact("LF_FOOT_contact", contactModel6) contactData = contactModel.createData(rdata) model = DifferentialActionModelFloatingInContact( State, actModel, contactModel, CostModelSum(State, actModel.nu, False), 0., True) data = model.createData() model.calc(data, x, u) model.calcDiff(data, x, u)
def createMultiphaseShootingProblem(rmodel, rdata, csw, timeStep): """ Create a Multiphase Shooting problem from the output of the centroidal solver. :params rmodel: robot model of type pinocchio::model :params rdata: robot data of type pinocchio::data :params csw: contact sequence wrapper of type ContactSequenceWrapper :params timeStep: Scalar timestep between nodes. :returns list of IntegratedActionModels """ # ----------------------- # Define Cost weights class Weights: com = 1e1 regx = 1e-3 regu = 0. swing_patch = 1e6 forces = 0. contactv = 1e3 # Define state cost vector for WeightedActivation ff_orientation = 1e1 xweight = np.array([0] * 3 + [ff_orientation] * 3 + [1.] * (rmodel.nv - 6) + [1.] * rmodel.nv) xweight[range(18, 20)] = ff_orientation # for patch in swing_patch: w.swing_patch.append(100.); # Define weights for the impact costs. imp_state = 1e2 imp_com = 1e2 imp_contact_patch = 1e6 imp_act_com = m2a([0.1, 0.1, 3.0]) # Define weights for the terminal costs term_com = 1e8 term_regx = 1e4 w = Weights() # ------------------------ problem_models = [] actuationff = ActuationModelFreeFloating(rmodel) State = StatePinocchio(rmodel) active_contact_patch = set() active_contact_patch_prev = set() for nphase, phase in enumerate(csw.cs.contact_phases): t0 = phase.time_trajectory[0] t1 = phase.time_trajectory[-1] N = int(round((t1 - t0) / timeStep)) + 1 contact_model = ContactModelMultiple(rmodel) # Add contact constraints for the active contact patches. # Add SE3 cost for the non-active contact patches. swing_patch = [] active_contact_patch_prev = active_contact_patch.copy() active_contact_patch.clear() for patch in csw.ee_map.keys(): if getattr(phase, patch).active: active_contact_patch.add(patch) active_contact = ContactModel6D(rmodel, frame=rmodel.getFrameId(csw.ee_map[patch]), ref=getattr(phase, patch).placement) contact_model.addContact(patch, active_contact) # print nphase, "Contact ",patch," added at ", getattr(phase,patch).placement.translation.T else: swing_patch.append(patch) # Check if contact has been added in this phase. If this phase is not zero, # add an impulse model to deal with this contact. new_contacts = active_contact_patch.difference(active_contact_patch_prev) if nphase != 0 and len(new_contacts) != 0: # print nphase, "Impact ",[p for p in new_contacts]," added" imp_model = ImpulseModelMultiple( rmodel, { "Impulse_" + patch: ImpulseModel6D(rmodel, frame=rmodel.getFrameId(csw.ee_map[patch])) for patch in new_contacts }) # Costs for the impulse of a new contact cost_model = CostModelSum(rmodel, nu=0) # State cost_regx = CostModelState(rmodel, State, ref=rmodel.defaultState, nu=actuationff.nu, activation=ActivationModelWeightedQuad(w.xweight)) cost_model.addCost("imp_regx", cost_regx, w.imp_state) # CoM cost_com = CostModelImpactCoM(rmodel, activation=ActivationModelWeightedQuad(w.imp_act_com)) cost_model.addCost("imp_CoM", cost_com, w.imp_com) # Contact Frameplacement for patch in new_contacts: cost_contact = CostModelFramePlacement(rmodel, frame=rmodel.getFrameId(csw.ee_map[patch]), ref=SE3(np.identity(3), csw.ee_splines[patch].eval(t0)[0]), nu=actuationff.nu) cost_model.addCost("imp_contact_" + patch, cost_contact, w.imp_contact_patch) imp_action_model = ActionModelImpact(rmodel, imp_model, cost_model) problem_models.append(imp_action_model) # Define the cost and action models for each timestep in the contact phase. # untill [:-1] because in contact sequence timetrajectory, the end-time is # also included. e.g., instead of being [0.,0.5], time trajectory is [0,0.5,1.] for t in np.linspace(t0, t1, N)[:-1]: cost_model = CostModelSum(rmodel, actuationff.nu) # For the first node of the phase, add cost v=0 for the contacting foot. if t == 0: for patch in active_contact_patch: cost_vcontact = CostModelFrameVelocity(rmodel, frame=rmodel.getFrameId(csw.ee_map[patch]), ref=m2a(Motion.Zero().vector), nu=actuationff.nu) cost_model.addCost("contactv_" + patch, cost_vcontact, w.contactv) # CoM Cost cost_com = CostModelCoM(rmodel, ref=m2a(csw.phi_c.com_vcom.eval(t)[0][:3, :]), nu=actuationff.nu) cost_model.addCost("CoM", cost_com, w.com) # Forces Cost for patch in contact_model.contacts.keys(): cost_force = CostModelForce(rmodel, contactModel=contact_model.contacts[patch], ref=m2a(csw.phi_c.forces[patch].eval(t)[0]), nu=actuationff.nu) cost_model.addCost("forces_" + patch, cost_force, w.forces) # Swing patch cost for patch in swing_patch: cost_swing = CostModelFramePlacement(rmodel, frame=rmodel.getFrameId(csw.ee_map[patch]), ref=SE3(np.identity(3), csw.ee_splines[patch].eval(t)[0]), nu=actuationff.nu) cost_model.addCost("swing_" + patch, cost_swing, w.swing_patch) # print t, "Swing cost ",patch," added at ", csw.ee_splines[patch].eval(t)[0][:3].T # State Regularization cost_regx = CostModelState(rmodel, State, ref=rmodel.defaultState, nu=actuationff.nu, activation=ActivationModelWeightedQuad(w.xweight)) cost_model.addCost("regx", cost_regx, w.regx) # Control Regularization cost_regu = CostModelControl(rmodel, nu=actuationff.nu) cost_model.addCost("regu", cost_regu, w.regu) dmodel = DifferentialActionModelFloatingInContact(rmodel, actuationff, contact_model, cost_model) imodel = IntegratedActionModelEuler(dmodel, timeStep=timeStep) problem_models.append(imodel) # Create Terminal Model. contact_model = ContactModelMultiple(rmodel) # Add contact constraints for the active contact patches. swing_patch = [] t = t1 for patch in csw.ee_map.keys(): if getattr(phase, patch).active: active_contact = ContactModel6D(rmodel, frame=rmodel.getFrameId(csw.ee_map[patch]), ref=getattr(phase, patch).placement) contact_model.addContact(patch, active_contact) cost_model = CostModelSum(rmodel, actuationff.nu) # CoM Cost cost_com = CostModelCoM(rmodel, ref=m2a(csw.phi_c.com_vcom.eval(t)[0][:3, :]), nu=actuationff.nu) cost_model.addCost("CoM", cost_com, w.term_com) # State Regularization cost_regx = CostModelState(rmodel, State, ref=rmodel.defaultState, nu=actuationff.nu, activation=ActivationModelWeightedQuad(w.xweight)) cost_model.addCost("regx", cost_regx, w.term_regx) dmodel = DifferentialActionModelFloatingInContact(rmodel, actuationff, contact_model, cost_model) imodel = IntegratedActionModelEuler(dmodel) problem_models.append(imodel) problem_models.append return problem_models
robot.model.armature[6:] = 1. qmin = robot.model.lowerPositionLimit qmin[:7] = -1 robot.model.lowerPositionLimit = qmin qmax = robot.model.upperPositionLimit qmax[:7] = 1 robot.model.upperPositionLimit = qmax rmodel = robot.model rdata = rmodel.createData() np.set_printoptions(linewidth=400, suppress=True) contactModel = ContactModel6D( rmodel, rmodel.getFrameId('gripper_left_fingertip_2_link'), ref=pinocchio.SE3.Random(), gains=[4., 4.]) contactData = contactModel.createData(rdata) q = pinocchio.randomConfiguration(rmodel) v = rand(rmodel.nv) x = m2a(np.concatenate([q, v])) u = m2a(rand(rmodel.nv - 6)) pinocchio.forwardKinematics(rmodel, rdata, q, v, zero(rmodel.nv)) pinocchio.computeJointJacobians(rmodel, rdata) pinocchio.updateFramePlacements(rmodel, rdata) pinocchio.computeForwardKinematicsDerivatives(rmodel, rdata, q, v, zero(rmodel.nv)) contactModel.calc(contactData, x)