예제 #1
0
# Sold by the estate of Jeanne Baptiste d'Albert de Luynes

from cromulent.model import factory, TimeSpan, Aggregation, Actor, Place
from cromulent.vocab import Painting, add_art_setter, LotNumber, Purchase, Description

add_art_setter()

acq = Purchase()
lot = Aggregation(label="Verrue sale, lot 87")
acq2 = Purchase()
obj = Painting("http://www.getty.edu/art/collection/objects/882/rembrandt-harmensz-van-rijn-the-abduction-of-europa-dutch-1632/", label="The Abduction of Europa", art=1)
est = Actor(label="The estate of Jeanne Baptiste d'Albert de Luynes, comtesse de Verrue")

lot.identified_by = LotNumber(value="87")
lot.aggregates = obj 

# Date of Acquisition
date = TimeSpan()
date.begin_of_the_begin = "1737-03-27T00:00:00Z"
date.end_of_the_end = "1737-03-27T23:59:59Z"


# Description 
des = Description(value="1736 - 1737: Estate of Jeanne Baptiste d'Albert de Luynes, comtesse de Verrue, 1670 - 1736 [sold, Verrue sale, Paris, March 27, 1737, lot 87.]")


acq.used_specific_object = lot
acq.part = acq2
acq2.timespan = date
acq2.transferred_title_from = est
acq2.transferred_title_of = obj
예제 #2
0

dept = {
	'GCI': GCI, 
	'JPGM': JPGM, 
	'JPGM Antiquities': JPGM_Anti,
	'JPGM Painting Conservation': JPGM_Paint,
	'JPGM Dec Arts Conservation': JPGM_Dec,
	'JPGM Antiquities Conservation': JPGM_Anti_Con
	
}


# ACQUIRED FROM SELLERS

CSchoettlin = Actor(label="Charles Schoettlin")
Kremer= Group(label="Kremer Pigments Inc.")
Dick_Blick = Group(label="Dick Blick Art Materials")
World_Timbers = Group(label="World Timbers")
Forbes = Group(label="E. W. Forbes Collection")
Tate = Group(label="Tate Britain")
Pearl_Art = Group("Pearl Art and Craft Supply")
McCrone = Group(label="McCrone Accessories & Components")
Schweppe = Actor(label="H. Schweppe")
US_Customs = Group(label="U.S.Customs Lab, Long Beach")
Standard_Brands = Group(label="Standard Brands")
Daniel_Smith = Group(label="Daniel Smith Artist Materials")
Arbidar = Group(label="The Arbidar Co.")
Harvard = Group(label="Harvard Art Museums")
BH_Photo = Group(label="B&H Photo Video")
Sam_Francis = Group(label="Sam Francis Foundation")
예제 #3
0
def main():
    f = open("ref_col.csv", "r")
    r = csv.reader(f)

    next(r)  #Skip header

    headers = [
        "acq_by", "acq_from", "acq_date", "add_names", "avai_data", "cat",
        "certified", "chem_comp", "CAS", "chem_form", "chem_name", "coll_name",
        "color", "CI", "name", "comp_type", "contact", "email", "experiments",
        "fire", "formulation", "fbarcode", "geo_org", "grid_loc", "health",
        "manufacturer", "mass_vol", "mix_pigment", "mix_type", "MSDS",
        "nat_syn", "notes", "obarcode", "org_date", "other_safe", "part_coll",
        "phone", "phys_form", "prep", "reactivity", "samp_type", "typ_use",
        "warning", "borrower", "inv_status"
    ]

    for counter, row in enumerate(r):
        rec = dict(zip(headers, row))
        # Testing first two rows
        if counter < 2:
            s = ManMadeObject(label=rec['name'])

            # Sample Identification/General Information

            s.identified_by = Barcode(label="Full Barcode",
                                      value=rec['fbarcode'])
            s.identified_by = Barcode(label="Old Barcode",
                                      value=rec['obarcode'])
            s.identified_by = PrimaryName(label="Common Name",
                                          value=rec['name'])
            s.identified_by = Name(label="Additional Names",
                                   value=rec['add_names'])

            # Sample Type
            if rec['samp_type']:
                try:
                    s.classified_as = instances[rec['samp_type'].lower()]
                except:
                    s.referred_to_by = Description(label="Sample Type",
                                                   value=rec['samp_type'])

            # Typical use
            if rec['typ_use']:
                use = rec['typ_use'].split('/')
                for i in range(len(use)):
                    try:
                        s.as_general_use = instances[use[i].lower().strip()]
                    except:
                        s.referred_to_by = Description(label="Typical Use",
                                                       value=use[i])

            # Physical Form
            if rec['phys_form']:
                pf = rec['phys_form'].split()

                if len(pf) < 4:
                    l = []

                    for i in range(len(pf)):
                        try:
                            s.classified_as = instances[pf[i].lower().replace(
                                ',', '').strip()]
                        except:
                            l.append(pf[i])

                    l_join = " ".join(l)

                    s.referred_to_by = Description(label="Physical Form",
                                                   value=l_join)

                else:
                    s.referred_to_by = Description(label="Physical Form",
                                                   value=rec['phys_form'])

            # Color
            if rec['color']:
                try:
                    s.classified_as = instances[rec['color'].lower()]
                except:
                    s.referred_to_by = Description(label="Color",
                                                   value=rec['color'])

            # Index (CI) Color

            # Natural/Synthetic
            if rec['nat_syn']:
                s.classified_as = instances[rec['nat_syn'].lower()]
            elif rec['nat_syn'] == "Unknown":
                s.classified_as = Type(label="Natural/Synthetic",
                                       value="Unknown")

            # Preparation : go to Production

            # Certified Standard

            # Grid Location: lab shelf/storage?
            loc = Place()
            if rec['grid_loc']:
                loc.identified_by = Identifier(label="Grid Location",
                                               value=rec['grid_loc'])
                s.current_location = loc

        # Chemical Information
        # Chemical Formula
            if rec['chem_form']:
                s.identified_by = Formula(value=rec['chem_form'])

            if rec['chem_name']:
                s.identified_by = Name(label="Chemical Name",
                                       value=rec['chem_name'])

            if rec['CAS']:
                s.identified_by = Identifier(label="Chemical (CAS) No.",
                                             value=rec['CAS'])

            if rec['comp_type']:
                comp_type = rec['comp_type'].lower()
                try:
                    s.classified_as = instances[comp_type]
                except:
                    s.classified_as = Type(label="Compound Type",
                                           value=rec['comp_type'])

            if rec['mix_type']:
                mix_type = rec['mix_type'].split('-')
                for i in mix_type:
                    s.classified_as = instances[i.lower().strip()]

        # Acquisition Information

            acq = Acquisition()

            s.changed_ownership_through = acq
            acq.transferred_title_to = v.dept['GCI']
            # Acquisition Date
            if rec['acq_date']:
                adate = rec['acq_date']
                tspan = TimeSpan(label=adate)
                if len(adate) == 4:
                    tspan.begin_of_the_begin = str(
                        parse(adate + 'January',
                              settings={'PREFER_DAY_OF_MONTH': 'first'}))
                    tspan.end_of_the_end = str(
                        parse(adate + 'January',
                              settings={'PREFER_DAY_OF_MONTH': 'first'}) +
                        timedelta(days=365))
                elif 'ca.' in adate or 'Spring' in adate:
                    y = adate.split()[1]
                    tspan.begin_of_the_begin = str(
                        parse(y + 'January',
                              settings={'PREFER_DAY_OF_MONTH': 'first'}))
                    tspan.end_of_the_end = str(
                        parse(y + 'January',
                              settings={'PREFER_DAY_OF_MONTH': 'first'}) +
                        timedelta(days=365))
                elif '-' in adate:
                    y = adate.split('-')
                    start_year = y[0].strip()
                    end_year = y[1].strip()
                    if len(start_year) == 4:
                        tspan.begin_of_the_begin = str(
                            parse(start_year + 'January',
                                  settings={'PREFER_DAY_OF_MONTH': 'first'}))
                        tspan.end_of_the_end = str(
                            parse(end_year + 'January',
                                  settings={'PREFER_DAY_OF_MONTH': 'first'}) +
                            timedelta(days=365))
                    else:
                        tspan.begin_of_the_begin = str(
                            parse(adate,
                                  settings={'PREFER_DAY_OF_MONTH': 'first'}))
                        tspan.end_of_the_end = str(
                            parse(adate,
                                  settings={'PREFER_DAY_OF_MONTH': 'last'}) +
                            timedelta(days=1))
                else:
                    tspan.begin_of_the_begin = str(
                        parse(adate, settings={'PREFER_DAY_OF_MONTH':
                                               'first'}))
                    tspan.end_of_the_end = str(
                        parse(adate, settings={'PREFER_DAY_OF_MONTH': 'last'})
                        + timedelta(days=1))

                acq.timespan = tspan

            # Acquired by
            if rec['acq_by']:

                p = rec['acq_by'].split('-')
                pname = p[0].split()

                agent = " ".join(pname)
                dpt = p[-1]

                if agent in v.person:
                    emp = v.person[agent]
                else:
                    emp = Person(label=agent)
                acq.carried_out_by = emp
                if dpt in v.dept:
                    emp.member_of = v.dept[dpt]

            # Part of Collection
            if rec['part_coll']:
                s.referred_to_by = LinguisticObject(label='Part of Collection',
                                                    value=rec['part_coll'])

            # Acquired from, debating whether it should be Actor or Group,
            # so info of person in contact can be linked

            global seller

            if rec['acq_from']:
                if rec['acq_from'] in v.sellers:
                    seller = v.sellers[rec['acq_from'].strip()]
                else:
                    seller = Actor(label=rec['acq_from'].strip())
                acq.transferred_title_from = seller

            # Collection Name
            if rec['coll_name']:
                coll = v.collection[rec['coll_name']]
                s.aggregated_by = coll
                coll_creation = Creation()
                coll.created_by = coll_creation
                coll_creation.carried_out_by = seller

            # Contact name
            if rec['contact']:
                if rec['contact'] in v.contact:
                    contact_name = v.contact[rec['contact'].strip()]
                else:
                    s.related_entity = contact_name
                # Email
                if rec['email']:
                    contact_name.contact_point = EMail(label="E-Mail",
                                                       value=rec['email'])

            # Phone number: could be either the number of the contact person,
            # or of the acquired_from
            # if rec['phone']:

            prod = Production()
            s.produced_by = prod

            # Preparation
            if rec['prep']:
                prep = SamplePreparation(value=rec['prep'])
                prod.technique = prep
                if rec['formulation']:
                    prep.referred_to_by = Formulation(value=rec['formulation'])

            # Geographic Origin
            if rec['geo_org']:
                origin = Place(label="Geographic Origin")
                origin.identified_by = Name(value=rec['geo_org'])
                prod.took_place_at = origin

            # Manufacturer
            if rec['manufacturer']:
                if rec['manufacturer'] in v.manufacturers:
                    mfr = v.manufacturers[rec['manufacturer']]
                elif rec['manufacturer'] in v.sellers:
                    mfr = v.sellers[rec['manufacturer']]
                else:
                    mfr = Group(label=rec['manufacturer'])
                prod.carried_out_by = mfr

            # Catalog No.
            if rec['cat']:
                s.identified_by = CatalogNumber(label="Catalog No.",
                                                value=rec['cat'])

        # Miscellaneous

        # Origination Date
        # if rec['org_date']:
        # 	odate = rec['org_date']
        # 	t_span = TimeSpan(label=odate)
        # 	if len(adate) == 4:
        # 		t_span.begin_of_the_begin = str(parse(odate + 'January', settings={'PREFER_DAY_OF_MONTH': 'first'}))
        # 		t_span.end_of_the_end = str(parse(odate + 'January', settings={'PREFER_DAY_OF_MONTH': 'first'}) + timedelta(days=365))
        # 	elif 'ca.' in adate or 'pre' in adate:
        # 		y = odate.split()[1]
        # 		t_span.begin_of_the_begin = str(parse(y + 'January', settings={'PREFER_DAY_OF_MONTH': 'first'}))
        # 		t_span.end_of_the_end = str(parse(y + 'January', settings={'PREFER_DAY_OF_MONTH': 'first'}) + timedelta(days=365))
        # 	elif '-' in adate:
        # 		y = odate.split('-')
        # 		start_year = y[0].strip()
        # 		end_year = y[1].strip()
        # 		if len(start_year) == 4:
        # 			t_span.begin_of_the_begin = str(parse(start_year + 'January', settings={'PREFER_DAY_OF_MONTH': 'first'}))
        # 			t_span.end_of_the_end = str(parse(end_year + 'January', settings={'PREFER_DAY_OF_MONTH': 'first'}) + timedelta(days=365))
        # 		else:
        # 			t_span.begin_of_the_begin = str(parse(odate, settings={'PREFER_DAY_OF_MONTH': 'first'}))
        # 			t_span.end_of_the_end = str(parse(odate, settings={'PREFER_DAY_OF_MONTH': 'last'}) + timedelta(days=1))
        # 	else:
        # 		t_span.begin_of_the_begin = str(parse(odate, settings={'PREFER_DAY_OF_MONTH': 'first'}))
        # 		t_span.end_of_the_end = str(parse(odate, settings={'PREFER_DAY_OF_MONTH': 'last'}) + timedelta(days=1))

        # acq.timespan = t_span

        # Mass or Volume
            if rec['mass_vol']:
                mv = rec['mass_vol'].replace('appx.',
                                             '').replace('approx.',
                                                         '').split()
                if len(mv) == 2:
                    dim = MassVolume(value=mv[0])
                    s.dimension = dim
                    dim.unit = instances[mv[1].replace('.', '')]
                else:
                    try:
                        u = instances[(mv[1] + " " + mv[2]).replace('.', '')]
                        dim = MassVolume(value=mv[0])
                        s.dimension = dim
                        dim.unit = u
                    except:
                        s.referred_to_by = DimensionStatement(
                            label="Mass or Volume", value=rec['mass_vol'])

            # Experiments on Sample
            if rec['experiments']:
                s.referred_to_by = Description(label="Experiments on Sample",
                                               value=rec['experiments'])

            # Notes
            if rec['notes']:
                s.referred_to_by = Notes(value=rec['notes'])

        # Available Data

        # MSDS & Safety

        # Safety: classified_as or referred_to_by properties
            if rec['fire']:
                s.classified_as = FireSafety(value=rec['fire'])

            if rec['health']:
                health_safe = Safety(label="Health Safety",
                                     value=rec['health'])
                s.classified_as = health_safe
                health_safe.classified_as = instances['health']

            if rec['reactivity']:
                react_safe = Safety(label="Reactivity Safety",
                                    value=rec['reactivity'])
                s.classified_as = react_safe
                react_safe.classified_as = instances['reactivity']

            if rec['other_safe']:
                other_safe = Safety(label="Other Safety",
                                    value=rec['other_safe'])
                s.classified_as = other_safe
                other_safe.classified_as = instances['other']

            print(factory.toString(s, compact=False))
예제 #4
0
def main():
	f = open("ref_col.csv", "r")
	r = csv.reader(f)

	next(r) #Skip header
	headers = ["acq_by", "acq_from", "acq_date", "add_names", "avai_data", "cat", 
		"certified", "chem_comp", "CAS", "chem_form", "chem_name", "col_name", "color",
		"CI", "name", "comp_type", "contact", "email", "experiments", "fire", "formulation",
		"fbarcode", "geo_org", "grid_loc", "health", "manufacturer", "mass_vol", "mix_pigment",
		"mix_type", "MSDS", "nat_syn", "notes", "obarcode", "org_date", "other_safe", 
		"part_col", "phone", "phys_form", "prep", "reactivity", "samp_type", "typ_use",
		"warning", "borrower", "inv_status"]
	for counter, row in enumerate(r):
		rec = dict(zip(headers, row))
		# Testing first two rows
		if counter < 2: 
			s = ManMadeObject(label="Sample Object")

		# Sample Identification/General Information
			# AccessionNumber is used for now, will a new class Barcode - aat:300343361
			s.identified_by = Barcode(label="Full Barcode", value=rec['fbarcode']) 
			s.identified_by = Barcode(label="Old Barcode", value=rec['obarcode'])
			s.identified_by = Name(label="Common Name", value=rec['name'])
			s.identified_by = Name(label="Additional Names", value=rec['add_names'])
			
			# Sample Type
			if rec['samp_type']:
				s.classified_as = instances[rec['samp_type'].lower()]
			
			# Typical use
			if rec['typ_use']:
				s.as_general_use = instances[rec['typ_use'].lower()]
			
			# Physical Form
			if rec['phys_form']:
				pf = rec['phys_form'].split()
				if len(pf) < 4:
					i = 0
					while i <= 2:
						s.classified_as = instances[pf[i].lower().replace(',', '')]
						i += 1
						break
				else:
					s.referred_to_by = Description(label="Sample Type", value=rec['phys_form'])

			# Color
			if rec['color']:
				s.classified_as = instances[rec['color']]
			
			# Natural/Synthetic
			if rec['nat_syn']:
				s.classified_as = instances[rec['nat_syn'].lower()]
			elif rec[nat_syn] == "Unknown":
				s.classified_as = Type(label="Natural/Synthetic", value="Unknown") 

			# Grid Location: lab shelf/storage?
			loc = Place()
			if rec['grid_loc']:
				loc.identified_by = Identifier(label="Grid Location", value=rec['grid_loc'])
				s.current_location = loc 
			
			# Index (CI) No., Preparation, Certified Standard

		# Acquisition Information

			acq = Acquisition()
			gci = Department("http://www.getty.edu/conservation/", label="Getty Research Institute")
			s.changed_ownership_through = acq
			acq.transferred_title_to = gci
			# Acquisition Date
			if rec['acq_date']:
				acq.timespan = TimeSpan(label=rec['acq_date'])

			# Acquired by
			if rec['acq_by']:
				emp = Actor(label=rec['acq_by'])
				acq.carried_out_by = emp
				emp.member_of = gci

			# Acquired from, debating whether it should be Actor or Group,
			# so info of person in contact can be linked
			if rec['acq_from']:
				acq.transferred_title_from = Actor(label=rec['acq_from'])

			# Geographic Origin
			if rec['geo_org']:
				prod = Production()
				origin = Place(label="Geographic Origin")
				origin.identified_by = Name(value=rec['geo_org'])
				prod.took_place_at = origin
				s.produced_by = prod

			# Catalog No.
			if rec['cat']:
				s.identified_by = CatalogNumber(label="Catalog No.", value=rec['cat'])

		# Miscellaneous
			# Notes
			if rec['notes']:
				io = InformationObject(value=rec['notes'])
				io.classified_as = instances["notes"]





			print(factory.toString(s, compact=False))
예제 #5
0
# Title
obj.identified_by = PrimaryName(label="Title", value="The Abduction of Europa")
obj.identified_by = Name(label="ALternate Title",
                         value="El rapto de Europa (Published Title)")

prod = Production()
obj.produced_by = prod

# Collection
col = CollectionSet("http://www.getty.edu/art/collection/",
                    label="The J. Paul Getty Museum Collection")
obj.aggregated_by = col

# Artist info
artist = Actor(
    "http://www.getty.edu/art/collection/artists/469/rembrandt-harmensz-van-rijn-dutch-1606-1669/",
    label="Artist")
artist.identified_by = PrimaryName(value="Rembrandt Harmensz. van Rijn")
artist.classified_as = instances["dutch nationality"]
birth = BeginningOfExistence()
btime = TimeSpan(label="1606")
btime.begin_of_the_begin = "1606-01-01T00:00:00Z"
btime.end_of_the_end = "1607-01-01T00:00:00Z"
birth.timespan = btime
death = EndOfExistence()
dtime = TimeSpan(label="1669")
dtime.begin_of_the_begin = "1669-01-01T00:00:00Z"
dtime.end_of_the_end = "1670-01-01T00:00:00Z"
death.timespan = dtime
artist.brought_into_existence_by = birth
artist.taken_out_of_existence_by = death