def SVM(X, y, sp, word_=False, samp_method=None): svm = SVC(class_weight='balanced') return cross_val(svm, X, y, sp, cv=5, word_=word_, svm=True, samp_method=samp_method)
def KNN(X, y, sp, word_=False): knn = KNeighborsClassifier(n_neighbors=5) return cross_val(knn, X, y, sp, word_=word_, samp_method=samp_method)
def ran_forest(X, y, sp, word_=False, samp_method=None): rf = RandomForestClassifier() return cross_val(rf, X, y, sp, word_=word_, samp_method=samp_method)
def GB(X, y, sp, word_=False, samp_method=None): gb = GradientBoostingClassifier() return cross_val(gb, X, y, sp, word_=word_, samp_method=samp_method)