예제 #1
0
def pubkey_from_tpm2b_public(public: bytes) -> pubkey_type:
    (public, rest) = _extract_tpm2b(public)
    if len(rest) != 0:
        raise ValueError("More in tpm2b_public than tpmt_public")
    # Extract type, [nameAlg], and [objectAttributes] (we don't care about the
    #  latter two)
    (alg_type, _, _) = struct.unpack(">HHI", public[0:8])
    # Ignore the authPolicy
    (_, sym_parms) = _extract_tpm2b(public[8:])
    # Ignore the non-asym-alg parameters
    (sym_mode, ) = struct.unpack(">H", sym_parms[0:2])
    # Ignore the sym_mode and keybits (4 bytes), possibly symmetric (2) and sign
    #  scheme (2)
    to_skip = 4 + 2  # sym_mode, keybits and sign scheme
    if sym_mode != TPM2_ALG_NULL:
        to_skip = to_skip + 2
    asym_parms = sym_parms[to_skip:]

    # Handle fields
    if alg_type == TPM_ALG_RSA:
        (keybits, exponent) = struct.unpack(">HI", asym_parms[0:6])
        if exponent == 0:
            exponent = 65537
        (modulus, _) = _extract_tpm2b(asym_parms[6:])
        if (len(modulus) * 8) != keybits:
            raise ValueError(
                f"Misparsed either modulus or keybits: {len(modulus)}*8 != {keybits}"
            )
        bmodulus = int.from_bytes(modulus, byteorder="big")

        numbers = RSAPublicNumbers(exponent, bmodulus)
        return numbers.public_key(backend=default_backend())

    if alg_type == TPM_ALG_ECC:
        (curve, _) = struct.unpack(">HH", asym_parms[0:4])
        asym_x = asym_parms[4:]
        curve = _curve_from_curve_id(curve)

        (x, asym_y) = _extract_tpm2b(asym_x)
        (y, rest) = _extract_tpm2b(asym_y)
        if len(rest) != 0:
            raise ValueError("Misparsed: more contents after X and Y")

        if (len(x) * 8) != curve.key_size:
            raise ValueError(
                f"Misparsed either X or curve: {len(x)}*8 != {curve.key_size}")
        if (len(y) * 8) != curve.key_size:
            raise ValueError(
                f"Misparsed either Y or curve curve: {len(y)}*8 != {curve.key_size}"
            )

        bx = int.from_bytes(x, byteorder="big")
        by = int.from_bytes(y, byteorder="big")

        numbers = EllipticCurvePublicNumbers(bx, by, curve)
        return numbers.public_key(backend=default_backend())

    raise ValueError(f"Invalid tpm2b_public type: {alg_type}")
예제 #2
0
파일: request.py 프로젝트: pvaillant/ALTAR
 def verify(self):
     """ Verify the SSHCSR object in situ """
     public_key = RSAPublicNumbers(self.public_key.e, self.public_key.n)
     try:
         public_key.public_key(default_backend()).verify(
             base64.b64decode(self.signature), self.json(False),
             padding.PKCS1v15(), hashes.SHA256())
         return True
     except InvalidSignature:
         return False
예제 #3
0
    def validate(self, message):
        """Verify the signature of self RSA fulfillment.

        The signature of self RSA fulfillment is verified against the
        provided message and the condition's public modulus.

        Args:
            message (bytes): Message to verify.

        Returns:
            bool: Whether self fulfillment is valid.

        """
        if not isinstance(message, bytes):
            raise Exception('Message must be provided as bytes, was: ' +
                            message)

        public_numbers = RSAPublicNumbers(
            PUBLIC_EXPONENT,
            int.from_bytes(self.modulus, byteorder='big'),
        )
        public_key = public_numbers.public_key(default_backend())
        try:
            public_key.verify(
                self.signature, message,
                padding.PSS(
                    mgf=padding.MGF1(hashes.SHA256()),
                    salt_length=SALT_LENGTH,
                ), hashes.SHA256())
        except InvalidSignature as exc:
            raise ValidationError('Invalid RSA signature') from exc

        return True
예제 #4
0
def test_response_values(app, client):
    """
    Do some more thorough checking on the response obtained from the JWKS
    endpoint.

    Because fence only uses the RSA algorithm for signing and validating JWTs,
    the ``alg``, ``kty``, ``use``, and ``key_ops`` fields are hard-coded for
    this.

    Furthermore, every JWK in the response should have values for the RSA
    public modulus ``n`` and exponent ``e`` which may be used to reconstruct
    the public key.
    """
    keys = client.get('/.well-known/jwks').json['keys']
    app_kids = [keypair.kid for keypair in app.keypairs]
    app_public_keys = [keypair.public_key for keypair in app.keypairs]
    for key in keys:
        assert key['alg'] == 'RS256'
        assert key['kty'] == 'RSA'
        assert key['use'] == 'sig'
        assert key['key_ops'] == 'verify'
        assert key['kid'] in app_kids
        # Attempt to reproduce the public key from the values for the public
        # modulus and exponent provided in the response, using cryptography
        # primitives.
        n = int(base64.b64decode(key['n']))
        e = int(base64.b64decode(key['e']))
        numbers = RSAPublicNumbers(e, n)
        key = numbers.public_key(default_backend())
        key_pem = key.public_bytes(
            encoding=serialization.Encoding.PEM,
            format=serialization.PublicFormat.SubjectPublicKeyInfo)
        assert key_pem in app_public_keys
예제 #5
0
 def _convert(exponent: int, modulus: int) -> bytearray:
     components = RSAPublicNumbers(exponent, modulus)
     pub = components.public_key(backend=default_backend())
     key_bytes = pub.public_bytes(
         encoding=serialization.Encoding.PEM,
         format=serialization.PublicFormat.SubjectPublicKeyInfo,
     )
     return cast(bytearray, key_bytes)
예제 #6
0
def rsa_pem_from_jwk(jwk):
    public_num = RSAPublicNumbers(n=decode_value(jwk['n']),
                                  e=decode_value(jwk['e']))
    public_key = public_num.public_key(default_backend())
    pem = public_key.public_bytes(
        encoding=serialization.Encoding.PEM,
        format=serialization.PublicFormat.SubjectPublicKeyInfo)
    return pem
예제 #7
0
 def get_PEM_from_RSA(self, modulus, exponent):
     exponent_long = self.base64_to_long(exponent)
     modulus_long = self.base64_to_long(modulus)
     numbers = RSAPublicNumbers(exponent_long, modulus_long)
     public_key = numbers.public_key(backend=default_backend())
     pem = public_key.public_bytes(
         encoding=serialization.Encoding.PEM,
         format=serialization.PublicFormat.SubjectPublicKeyInfo)
     return pem
예제 #8
0
def jwk_to_pem(jwk):
    exponent = base64_to_long(jwk['e'])
    modulus = base64_to_long(jwk['n'])
    numbers = RSAPublicNumbers(exponent, modulus)
    public_key = numbers.public_key(backend=default_backend())
    pem = public_key.public_bytes(
        encoding=serialization.Encoding.PEM,
        format=serialization.PublicFormat.SubjectPublicKeyInfo)
    return pem
예제 #9
0
def pemFromModExp(modulus, exponent):
    exponentlong = base64_to_long(exponent)
    moduluslong = base64_to_long(modulus)
    numbers = RSAPublicNumbers(exponentlong, moduluslong)
    public_key = numbers.public_key(backend=default_backend())
    pem = public_key.public_bytes(
        encoding=serialization.Encoding.PEM,
        format=serialization.PublicFormat.SubjectPublicKeyInfo)
    return pem
예제 #10
0
def from_jwk(obj):

    if obj.get('kty') != 'RSA':
        raise InvalidKeyError('Not an RSA key')

    # Public key
    numbers = RSAPublicNumbers(from_base64url_uint(obj['e']),
                               from_base64url_uint(obj['n']))

    return numbers.public_key(default_backend())
예제 #11
0
def rsa_pem_from_jwk(jsonKeyResult):
    print(jsonKeyResult['keys'][0]['n'])
    exponent = base64_to_long(jsonKeyResult['keys'][0]['e'])
    modulus = base64_to_long(jsonKeyResult['keys'][0]['n'])
    numbers = RSAPublicNumbers(exponent, modulus)
    public_key = numbers.public_key(backend=default_backend())
    pem = public_key.public_bytes(
        encoding=serialization.Encoding.PEM,
        format=serialization.PublicFormat.SubjectPublicKeyInfo)
    return pem
예제 #12
0
def jwk_to_pem(jwk_):
    # source: https://github.com/jpf/okta-jwks-to-pem/blob/master/jwks_to_pem.py
    exponent = base64_to_long(jwk_['e'])
    modulus = base64_to_long(jwk_['n'])
    numbers = RSAPublicNumbers(exponent, modulus)
    public_key = numbers.public_key(backend=default_backend())
    pem = public_key.public_bytes(
        encoding=serialization.Encoding.PEM,
        format=serialization.PublicFormat.SubjectPublicKeyInfo
    )

    return pem
예제 #13
0
    def from_jwk(jwk):
        if not isinstance(jwk, JsonWebKey):
            raise TypeError('The specified jwk must be a JsonWebKey')

        if jwk.kty != 'RSA' and jwk.kty != 'RSA-HSM':
            raise ValueError(
                'The specified jwk must have a key type of "RSA" or "RSA-HSM"')

        if not jwk.n or not jwk.e:
            raise ValueError(
                'Invalid RSA jwk, both n and e must be have values')

        rsa_key = _RsaKey()
        rsa_key.kid = jwk.kid
        rsa_key.kty = jwk.kty
        rsa_key.key_ops = jwk.key_ops

        pub = RSAPublicNumbers(n=_bytes_to_int(jwk.n), e=_bytes_to_int(jwk.e))

        # if the private key values are specified construct a private key
        # only the secret primes and private exponent are needed as other fields can be calculated
        if jwk.p and jwk.q and jwk.d:
            # convert the values of p, q, and d from bytes to int
            p = _bytes_to_int(jwk.p)
            q = _bytes_to_int(jwk.q)
            d = _bytes_to_int(jwk.d)

            # convert or compute the remaining private key numbers
            dmp1 = _bytes_to_int(jwk.dp) if jwk.dp else rsa_crt_dmp1(
                private_exponent=d, p=p)
            dmq1 = _bytes_to_int(jwk.dq) if jwk.dq else rsa_crt_dmq1(
                private_exponent=d, q=q)
            iqmp = _bytes_to_int(jwk.qi) if jwk.qi else rsa_crt_iqmp(p=p, q=q)

            # create the private key from the jwk key values
            priv = RSAPrivateNumbers(p=p,
                                     q=q,
                                     d=d,
                                     dmp1=dmp1,
                                     dmq1=dmq1,
                                     iqmp=iqmp,
                                     public_numbers=pub)
            key_impl = priv.private_key(
                cryptography.hazmat.backends.default_backend())

        # if the necessary private key values are not specified create the public key
        else:
            key_impl = pub.public_key(
                cryptography.hazmat.backends.default_backend())

        rsa_key._rsa_impl = key_impl

        return rsa_key
예제 #14
0
def jwks_to_pem_keys(json_web_keys):
    pem_keys = []
    for jwk in json_web_keys['keys']:
        exponent = base64_to_long(jwk['e'])
        modulus = base64_to_long(jwk['n'])
        numbers = RSAPublicNumbers(exponent, modulus)
        public_key = numbers.public_key(backend=default_backend())
        pem = public_key.public_bytes(
            encoding=serialization.Encoding.PEM,
            format=serialization.PublicFormat.SubjectPublicKeyInfo)
        pem_keys.append(pem)
    return pem_keys
예제 #15
0
파일: config.py 프로젝트: wdesmedt/inmanta
    def _load_public_key(self, e, n):
        def to_int(x):
            bs = base64.urlsafe_b64decode(x + "==")
            return int.from_bytes(bs, byteorder="big")

        ei = to_int(e)
        ni = to_int(n)
        numbers = RSAPublicNumbers(ei, ni)
        public_key = numbers.public_key(backend=default_backend())
        pem = public_key.public_bytes(
            encoding=serialization.Encoding.PEM,
            format=serialization.PublicFormat.SubjectPublicKeyInfo)
        return pem
예제 #16
0
def get_pem_public_key_from_modulus_exponent(n, e):
    def _b64decode(data):
        # padding to have multiple of 4 characters
        if len(data) % 4:
            data = data + '=' * (len(data) % 4)
        data = data.encode('ascii')
        data = bytes(data)
        return long(base64.urlsafe_b64decode(data).encode('hex'), 16)

    modulus = _b64decode(n)
    exponent = _b64decode(e)
    numbers = RSAPublicNumbers(exponent, modulus)
    public_key = numbers.public_key(backend=default_backend())
    return public_key.public_bytes(
        encoding=serialization.Encoding.PEM,
        format=serialization.PublicFormat.SubjectPublicKeyInfo)
예제 #17
0
    def from_jwk(cls, jwk):
        if jwk.kty != "RSA" and jwk.kty != "RSA-HSM":
            raise ValueError(
                'The specified jwk must have a key type of "RSA" or "RSA-HSM"')

        if not jwk.n or not jwk.e:
            raise ValueError(
                "Invalid RSA jwk, both n and e must be have values")

        rsa_key = cls(kid=jwk.kid)
        rsa_key.kty = jwk.kty
        rsa_key.key_ops = jwk.key_ops

        pub = RSAPublicNumbers(n=_bytes_to_int(jwk.n), e=_bytes_to_int(jwk.e))

        # if the private key values are specified construct a private key
        # only the secret primes and private exponent are needed as other fields can be calculated
        if jwk.p and jwk.q and jwk.d:
            # convert the values of p, q, and d from bytes to int
            p = _bytes_to_int(jwk.p)
            q = _bytes_to_int(jwk.q)
            d = _bytes_to_int(jwk.d)

            # convert or compute the remaining private key numbers
            dmp1 = _bytes_to_int(jwk.dp) if jwk.dp else rsa_crt_dmp1(
                private_exponent=d, p=p)
            dmq1 = _bytes_to_int(jwk.dq) if jwk.dq else rsa_crt_dmq1(
                private_exponent=d, q=q)
            iqmp = _bytes_to_int(jwk.qi) if jwk.qi else rsa_crt_iqmp(p=p, q=q)

            # create the private key from the jwk key values
            priv = RSAPrivateNumbers(p=p,
                                     q=q,
                                     d=d,
                                     dmp1=dmp1,
                                     dmq1=dmq1,
                                     iqmp=iqmp,
                                     public_numbers=pub)
            key_impl = priv.private_key(default_backend())

        # if the necessary private key values are not specified create the public key
        else:
            key_impl = pub.public_key(default_backend())

        rsa_key._rsa_impl = key_impl  # pylint:disable=protected-access

        return rsa_key
예제 #18
0
    def from_dict(cls, dct):
        if 'oth' in dct:
            raise UnsupportedKeyTypeError(
                'RSA keys with multiples primes are not supported')

        try:
            e = uint_b64decode(dct['e'])
            n = uint_b64decode(dct['n'])
        except KeyError as why:
            raise MalformedJWKError('e and n are required') from why
        pub_numbers = RSAPublicNumbers(e, n)
        if 'd' not in dct:
            return cls(
                pub_numbers.public_key(backend=default_backend()), **dct)
        d = uint_b64decode(dct['d'])

        privparams = {'p', 'q', 'dp', 'dq', 'qi'}
        product = set(dct.keys()) & privparams
        if len(product) == 0:
            p, q = rsa_recover_prime_factors(n, e, d)
            priv_numbers = RSAPrivateNumbers(
                d=d,
                p=p,
                q=q,
                dmp1=rsa_crt_dmp1(d, p),
                dmq1=rsa_crt_dmq1(d, q),
                iqmp=rsa_crt_iqmp(p, q),
                public_numbers=pub_numbers)
        elif product == privparams:
            priv_numbers = RSAPrivateNumbers(
                d=d,
                p=uint_b64decode(dct['p']),
                q=uint_b64decode(dct['q']),
                dmp1=uint_b64decode(dct['dp']),
                dmq1=uint_b64decode(dct['dq']),
                iqmp=uint_b64decode(dct['qi']),
                public_numbers=pub_numbers)
        else:
            # If the producer includes any of the other private key parameters,
            # then all of the others MUST be present, with the exception of
            # "oth", which MUST only be present when more than two prime
            # factors were used.
            raise MalformedJWKError(
                'p, q, dp, dq, qi MUST be present or'
                'all of them MUST be absent')
        return cls(priv_numbers.private_key(backend=default_backend()), **dct)
예제 #19
0
파일: jwk.py 프로젝트: GehirnInc/python-jwt
    def from_dict(cls, dct):
        if 'oth' in dct:
            raise UnsupportedKeyTypeError(
                'RSA keys with multiples primes are not supported')

        try:
            e = uint_b64decode(dct['e'])
            n = uint_b64decode(dct['n'])
        except KeyError as why:
            raise MalformedJWKError('e and n are required')
        pub_numbers = RSAPublicNumbers(e, n)
        if 'd' not in dct:
            return cls(
                pub_numbers.public_key(backend=default_backend()), **dct)
        d = uint_b64decode(dct['d'])

        privparams = {'p', 'q', 'dp', 'dq', 'qi'}
        product = set(dct.keys()) & privparams
        if len(product) == 0:
            p, q = rsa_recover_prime_factors(n, e, d)
            priv_numbers = RSAPrivateNumbers(
                d=d,
                p=p,
                q=q,
                dmp1=rsa_crt_dmp1(d, p),
                dmq1=rsa_crt_dmq1(d, q),
                iqmp=rsa_crt_iqmp(p, q),
                public_numbers=pub_numbers)
        elif product == privparams:
            priv_numbers = RSAPrivateNumbers(
                d=d,
                p=uint_b64decode(dct['p']),
                q=uint_b64decode(dct['q']),
                dmp1=uint_b64decode(dct['dp']),
                dmq1=uint_b64decode(dct['dq']),
                iqmp=uint_b64decode(dct['qi']),
                public_numbers=pub_numbers)
        else:
            # If the producer includes any of the other private key parameters,
            # then all of the others MUST be present, with the exception of
            # "oth", which MUST only be present when more than two prime
            # factors were used.
            raise MalformedJWKError(
                'p, q, dp, dq, qi MUST be present or'
                'all of them MUST be absent')
        return cls(priv_numbers.private_key(backend=default_backend()), **dct)
예제 #20
0
    def from_jwk(jwk):
        if not isinstance(jwk, JsonWebKey):
            raise TypeError('The specified jwk must be a JsonWebKey')

        if jwk.kty != 'RSA' and jwk.kty != 'RSA-HSM':
            raise ValueError('The specified jwk must have a key type of "RSA" or "RSA-HSM"')

        if not jwk.n or not jwk.e:
            raise ValueError('Invalid RSA jwk, both n and e must be have values')

        rsa_key = _RsaKey()
        rsa_key.kid = jwk.kid
        rsa_key.kty = jwk.kty
        rsa_key.key_ops = jwk.key_ops

        pub = RSAPublicNumbers(n=_bytes_to_int(jwk.n), e=_bytes_to_int(jwk.e))

        # if the private key values are specified construct a private key
        # only the secret primes and private exponent are needed as other fields can be calculated
        if jwk.p and jwk.q and jwk.d:
            # convert the values of p, q, and d from bytes to int
            p = _bytes_to_int(jwk.p)
            q = _bytes_to_int(jwk.q)
            d = _bytes_to_int(jwk.d)

            # convert or compute the remaining private key numbers
            dmp1 = _bytes_to_int(jwk.dp) if jwk.dp else rsa_crt_dmp1(private_exponent=d, p=p)
            dmq1 = _bytes_to_int(jwk.dq) if jwk.dq else rsa_crt_dmq1(private_exponent=d, q=q)
            iqmp = _bytes_to_int(jwk.qi) if jwk.qi else rsa_crt_iqmp(p=p, q=q)

            # create the private key from the jwk key values
            priv = RSAPrivateNumbers(p=p, q=q, d=d, dmp1=dmp1, dmq1=dmq1, iqmp=iqmp, public_numbers=pub)
            key_impl = priv.private_key(cryptography.hazmat.backends.default_backend())

        # if the necessary private key values are not specified create the public key
        else:
            key_impl = pub.public_key(cryptography.hazmat.backends.default_backend())

        rsa_key._rsa_impl = key_impl

        return rsa_key
예제 #21
0
    def wrap_aes_key_local(self, aes_key, public_key):
        """
        Wraps AES key locally.
        Uses RSA-OAEP algorithm to wrap provided key.

        :param str aes_key: unencrypted AES key.
        :param str public_key: public part of RSA key.

        :return: String with encrypted AES key.
        """
        int_n = self._bytes_to_int(public_key.n)
        int_e = self._bytes_to_int(public_key.e)
        public_numbers = RSAPublicNumbers(int_e, int_n)
        public_key = public_numbers.public_key(default_backend())

        wrapped_key = public_key.encrypt(
            aes_key,
            padding.OAEP(mgf=padding.MGF1(algorithm=hashes.SHA1()),
                         algorithm=hashes.SHA1(),
                         label=None))
        return wrapped_key
예제 #22
0
    def calculate_cost(self):
        """Calculate the cost of fulfilling self condition.

        The cost of the RSA condition is the size of the modulus
        squared, divided By 64.

        Returns:
            int: Expected maximum cost to fulfill self condition.

        """
        if self.modulus is None:
            raise MissingDataError('Requires a public modulus')

        public_numbers = RSAPublicNumbers(
            PUBLIC_EXPONENT,
            int.from_bytes(self.modulus, byteorder='big'),
        )
        public_key = public_numbers.public_key(default_backend())
        modulus_bit_length = public_key.key_size
        # TODO watch out >> in Python is not the sane as JS >>>, may need to be
        # corrected. For instance see:
        # http://grokbase.com/t/python/python-list/0454t3tgaw/zero-fill-shift
        return int(math.pow(modulus_bit_length, 2)) >> RsaSha256.COST_RIGHT_SHIFT
예제 #23
0
    def validate(self, message):
        """Verify the signature of self RSA fulfillment.

        The signature of self RSA fulfillment is verified against the
        provided message and the condition's public modulus.

        Args:
            message (bytes): Message to verify.

        Returns:
            bool: Whether self fulfillment is valid.

        """
        if not isinstance(message, bytes):
            raise Exception(
                'Message must be provided as bytes, was: ' + message)

        public_numbers = RSAPublicNumbers(
            PUBLIC_EXPONENT,
            int.from_bytes(self.modulus, byteorder='big'),
        )
        public_key = public_numbers.public_key(default_backend())
        verifier = public_key.verifier(
            self.signature,
            padding.PSS(
                mgf=padding.MGF1(hashes.SHA256()),
                salt_length=SALT_LENGTH,
            ),
            hashes.SHA256()
        )
        verifier.update(message)
        try:
            verifier.verify()
        except InvalidSignature as exc:
            raise ValidationError('Invalid RSA signature') from exc

        return True
예제 #24
0
    def get_public_key(self, token, jwks_uri):
        headers = jwt.get_unverified_header(token)
        if headers is None or 'kid' not in headers:
            raise jwt.exceptions.InvalidTokenError(
                'cannot extract kid from headers')
        kid = headers['kid']

        jwks_content = self.get_http_content(jwks_uri)
        jwks = json.loads(jwks_content)
        jwk = None
        for j in jwks.get('keys', []):
            if j.get('kid') == kid:
                jwk = j
        if jwk is None:
            raise jwt.exceptions.InvalidTokenError(
                'JWK not found for kid={0}'.format(kid, str(jwks)))

        public_num = RSAPublicNumbers(n=decode_value(jwk['n']),
                                      e=decode_value(jwk['e']))
        public_key = public_num.public_key(default_backend())
        pem = public_key.public_bytes(
            encoding=serialization.Encoding.PEM,
            format=serialization.PublicFormat.SubjectPublicKeyInfo)
        return pem
예제 #25
0
    def calculate_cost(self):
        """Calculate the cost of fulfilling self condition.

        The cost of the RSA condition is the size of the modulus
        squared, divided By 64.

        Returns:
            int: Expected maximum cost to fulfill self condition.

        """
        if self.modulus is None:
            raise MissingDataError('Requires a public modulus')

        public_numbers = RSAPublicNumbers(
            PUBLIC_EXPONENT,
            int.from_bytes(self.modulus, byteorder='big'),
        )
        public_key = public_numbers.public_key(default_backend())
        modulus_bit_length = public_key.key_size
        # TODO watch out >> in Python is not the sane as JS >>>, may need to be
        # corrected. For instance see:
        # http://grokbase.com/t/python/python-list/0454t3tgaw/zero-fill-shift
        return int(math.pow(modulus_bit_length,
                            2)) >> RsaSha256.COST_RIGHT_SHIFT
예제 #26
0
def validateToken(token, jwks_url):
    k_stackTrace = {}
    try:
        #k_stackTrace['message'] = "validateToken Start-->>"
        kid = get_KID(token)
        #k_stackTrace['kid'] = str(kid)
        alg = get_ALG(token)
        #k_stackTrace['alg'] = str(alg)
        k_stackTrace['jwks_url'] = jwks_url
        jwk_sets = get_jwks_json(token, jwks_url)
        jwk = get_matching_jwks(jwk_sets, kid, alg)
        #k_stackTrace['jwks_url'] = str(jwks_url)
        #k_stackTrace['jwk'] = str(jwk)
        exponent = base64_to_long(jwk['e'])
        #k_stackTrace['exponent'] = str(exponent)
        modulus = base64_to_long(jwk['n'])
        #k_stackTrace['modulus'] = str(modulus)
        numbers = RSAPublicNumbers(exponent, modulus)
        public_key = numbers.public_key(backend=default_backend())
        #k_stackTrace['public_key'] = str(public_key)
        pem = public_key.public_bytes(
            encoding=serialization.Encoding.PEM,
            format=serialization.PublicFormat.SubjectPublicKeyInfo)
        secret = pem
        #k_stackTrace['secret/pem'] = str(secret)
        payload_decoded_and_verified = jwt.decode(token,
                                                  secret,
                                                  algorithms=[alg],
                                                  verify=True)
        k_stackTrace[
            'payload_decoded_and_verified'] = payload_decoded_and_verified

        return k_stackTrace
    except Exception, e:
        k_stackTrace['exception'] = str(e)
        return k_stackTrace
예제 #27
0
파일: rsa_key.py 프로젝트: imfht/flaskapps
 def load_public_key(self):
     numbers = RSAPublicNumbers(base64_to_int(self._dict_data['e']),
                                base64_to_int(self._dict_data['n']))
     return numbers.public_key(default_backend())
예제 #28
0
 def convert(exponent, modulus):
     components = RSAPublicNumbers(exponent, modulus)
     pub = components.public_key(backend=default_backend())
     return pub.public_bytes(
         encoding=serialization.Encoding.PEM,
         format=serialization.PublicFormat.SubjectPublicKeyInfo)
예제 #29
0
 def __init__(self, password, modulus, exponent):
     self._password = password.encode('utf-8')
     modulus = int(modulus, 16)
     exponent = int(exponent, 16)
     public_numbers = RSAPublicNumbers(exponent, modulus)
     self.public_key = public_numbers.public_key(default_backend())
예제 #30
0

def intarr2long(arr):
    return int(''.join(["%02x" % byte for byte in arr]), 16)


def base64_to_long(data):
    if isinstance(data, six.text_type):
        data = data.encode("ascii")

    # urlsafe_b64decode will happily convert b64encoded data
    _d = base64.urlsafe_b64decode(bytes(data) + b'==')
    return intarr2long(struct.unpack('%sB' % len(_d), _d))


print("Fetching JWKS from {}".format(args.org))
r = requests.get("https://{}/oauth2/v1/keys".format(args.org))
jwks = r.json()

for jwk in jwks['keys']:
    exponent = base64_to_long(jwk['e'])
    modulus = base64_to_long(jwk['n'])
    numbers = RSAPublicNumbers(exponent, modulus)
    public_key = numbers.public_key(backend=default_backend())
    pem = public_key.public_bytes(
        encoding=serialization.Encoding.PEM,
        format=serialization.PublicFormat.SubjectPublicKeyInfo)

    print "PEM for KID '{}'".format(jwk['kid'])
    print pem
예제 #31
0
    def __init__(self, params: Dict[int, Any]):
        super().__init__(params)

        self._key: Any = None
        self._hash: Any = None
        self._padding: Any = None
        salt_len: Any = padding.PSS.MAX_LENGTH

        # Validate kty.
        if params[1] != 3:
            raise ValueError("kty(1) should be RSA(3).")

        # Validate alg.
        if 3 not in params:
            raise ValueError("alg(3) not found.")
        if params[3] not in COSE_ALGORITHMS_RSA.values():
            raise ValueError(
                f"Unsupported or unknown alg(3) for RSA: {params[3]}.")
        if params[3] == -259 or params[3] == -39:
            self._hash = hashes.SHA512
            salt_len = 64
        elif params[3] == -258 or params[3] == -38:
            self._hash = hashes.SHA384
            salt_len = 48
        elif params[3] == -257 or params[3] == -37:
            self._hash = hashes.SHA256
            salt_len = 32
        else:
            raise ValueError(
                f"Unsupported or unknown alg(3) for RSA: {params[3]}.")
        if params[3] in [-37, -38, -39]:
            self._padding = padding.PSS(mgf=padding.MGF1(self._hash()),
                                        salt_length=salt_len)
        else:
            self._padding = padding.PKCS1v15()

        # Validate key_ops.
        if -3 not in params:  # the RSA private exponent d.
            if not self._key_ops:
                self._key_ops = RSAKey._ACCEPTABLE_PUBLIC_KEY_OPS
            else:
                prohibited = [
                    ops for ops in self._key_ops
                    if ops not in RSAKey._ACCEPTABLE_PUBLIC_KEY_OPS
                ]
                if prohibited:
                    raise ValueError(
                        f"Unknown or not permissible key_ops(4) for RSAKey: {prohibited[0]}."
                    )
        else:
            if not self._key_ops:
                self._key_ops = RSAKey._ACCEPTABLE_PRIVATE_KEY_OPS
            else:
                prohibited = [
                    ops for ops in self._key_ops
                    if ops not in RSAKey._ACCEPTABLE_PRIVATE_KEY_OPS
                ]
                if prohibited:
                    raise ValueError(
                        f"Unknown or not permissible key_ops(4) for RSAKey: {prohibited[0]}."
                    )

        # Validate RSA specific parameters.
        if -1 not in params or not isinstance(params[-1], bytes):
            raise ValueError("n(-1) should be set as bytes.")
        if -2 not in params or not isinstance(params[-2], bytes):
            raise ValueError("e(-2) should be set as bytes.")

        public_numbers = RSAPublicNumbers(
            n=int.from_bytes(params[-1], "big"),
            e=int.from_bytes(params[-2], "big"),
        )
        self._dict = params
        if -3 not in params:  # the RSA private exponent d.
            private_props = [
                p for p in params.keys() if p in [-4, -5, -6, -7, -8]
            ]
            if private_props:
                raise ValueError(
                    f"RSA public key should not have private parameter: {private_props[0]}."
                )
            self._key = public_numbers.public_key()
            return

        if -3 not in params or not isinstance(params[-3], bytes):
            raise ValueError("d(-3) should be set as bytes.")
        if -4 not in params or not isinstance(params[-4], bytes):
            raise ValueError("p(-4) should be set as bytes.")
        if -5 not in params or not isinstance(params[-5], bytes):
            raise ValueError("q(-5) should be set as bytes.")
        if -6 not in params or not isinstance(params[-6], bytes):
            raise ValueError("dP(-6) should be set as bytes.")
        if -7 not in params or not isinstance(params[-7], bytes):
            raise ValueError("dQ(-7) should be set as bytes.")
        if -8 not in params or not isinstance(params[-8], bytes):
            raise ValueError("qInv(-8) should be set as bytes.")

        private_numbers = RSAPrivateNumbers(
            d=int.from_bytes(params[-3], "big"),
            p=int.from_bytes(params[-4], "big"),
            q=int.from_bytes(params[-5], "big"),
            dmp1=int.from_bytes(params[-6], "big"),
            dmq1=int.from_bytes(params[-7], "big"),
            iqmp=int.from_bytes(params[-8], "big"),
            public_numbers=public_numbers,
        )
        self._key = private_numbers.private_key()
        return
예제 #32
0
 def loads_public_key(self, obj):
     numbers = RSAPublicNumbers(base64_to_int(obj['e']),
                                base64_to_int(obj['n']))
     return numbers.public_key(default_backend())