def model_index(features: Optional[bool] = True, parameters: Optional[bool] = True, tests: Optional[bool] = True, query: Optional[dict] = Body(...), service: ModelService = Depends(ModelService)): result = {} if features: result['features'] = service.clear_features(query) if parameters: result['parameters'] = service.clear_parameters(query) if tests: result['tests'] = service.clear_tests(query) return result
def main(dataset: str, target: str): service = FeatureSelectionService() models = ModelService() datasets = DatasetService() query = {"dataset": dataset, "target": target} # Clear feature search results from models models.clear_features(query) #search_models = models.query_models(query) # logging.info("[i] {} models for feature selection".format(len(search_models))) # for i, m in enumerate(search_models): symbols = datasets.get_dataset_symbols(dataset) for i, sym in enumerate(symbols): logging.info("==[{}/{}]== Dataset: {} {} {} =====".format( i + 1, len(symbols), sym, dataset, target)) mf = service.create_features_search(target=target, dataset=dataset, symbol=sym, split=0.7, method='importances') logging.info("[{}] Start feature search".format(get_timestamp())) mf = service.feature_selection(mf, sync=True) logging.info("[{}] End feature search".format(get_timestamp()))