예제 #1
0
def test_Coset():
    g = geo.Symmetry(nb.Matrix([[1,  0, 2, -1],
                                [0, -2, 0,  0],
                                [0,  0, 1,  1],
                                [0,  0, 0,  1]]))
    tg = geo.Transgen(geo.Dif(nb.Matrix([[1], [0], [0], [0]])),
                      geo.Dif(nb.Matrix([[0], [1], [0], [0]])),
                      geo.Dif(nb.Matrix([[0], [0], [2], [0]])))
    tg1 = geo.Transgen(geo.Dif(nb.Matrix([[1], [0], [0], [0]])),
                       geo.Dif(nb.Matrix([[0], [1], [0], [0]])),
                       geo.Dif(nb.Matrix([[0], [0], [2], [0]])))
    assert tg == tg1
    c = geo.Coset(g, tg)
    assert c.__str__() == \
        "{x+2z,-2y,z+1}\n"\
        "     1  0  0  \n"\
        "     0  1  0  \n"\
        "     0  0  2  "
    c = geo.Coset(g, geo.canonical)
    assert c.__str__() == "{x+2z,-2y,z}"
    g = geo.Symmetry(nb.Matrix([[ 1, 0, 0, 0.5],
                                [ 0, 1, 0, 0],
                                [ 0, 0, 1, 0],
                                [ 0, 0, 0, 1]]))
    c = geo.Coset(g, geo.canonical)
    g2 = geo.Symmetry(nb.Matrix([[ 1, 0, 0, -0.5],
                                 [ 0, 1, 0, 0],
                                 [ 0, 0, 1, 0],
                                 [ 0, 0, 0, 1]]))
    p1 = geo.Pos(nb.Matrix([[0.3], [0], [0], [1]]))
    p2 = geo.Pos(nb.Matrix([[0.8], [0], [0], [1]]))
    assert c.coset_representant_for_pos(p1) == g
    assert c.coset_representant_for_pos(p2) == g2
예제 #2
0
def test_Spacegroup():
    transgen = geo.canonical
    c1 = geo.Coset(geo.Symmetry(nb.Matrix.onematrix(4)), transgen)
    c2 = geo.Coset(
        geo.Symmetry(
            nb.Matrix([[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0],
                       [0, 0, 0, 1]])), transgen)
    sg = geo.Spacegroup(transgen, [c1, c2])
    assert sg.__str__() == \
        "Spacegroup        \n"\
        "----------        \n"\
        " canonical        \n"\
        "             x,y,z\n"\
        "          -x,-y,-z"
    transgen = geo.Transgen(geo.Dif(nb.Matrix([[1], [0], [0], [0]])),
                            geo.Dif(nb.Matrix([[0], [1], [0], [0]])),
                            geo.Dif(nb.Matrix([[0], [0], [2], [0]])))
    c1 = geo.Coset(geo.Symmetry(nb.Matrix.onematrix(4)), transgen)
    c2 = geo.Coset(
        geo.Symmetry(
            nb.Matrix([[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0],
                       [0, 0, 0, 1]])), transgen)
    sg = geo.Spacegroup(transgen, [c1, c2])
    assert sg.__str__() == \
        "                           Spacegroup        \n"\
        "                           ----------        \n"\
        "Transgen /  1  \   /  0  \   /  0  \         \n"\
        "        |   0   | |   1   | |   0   |        \n"\
        "         \  0  /   \  0  /   \  2  /         \n"\
        "                                        x,y,z\n"\
        "                                     -x,-y,-z"

    sg = geo.Spacegroup(geo.canonical, [
        geo.Coset(geo.Symmetry(nb.Matrix.onematrix(4)), geo.canonical),
        geo.Coset(
            geo.Symmetry(
                nb.Matrix([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 1, 0],
                           [0, 0, 0, 1]])), geo.canonical)
    ])

    transformation = geo.Transformation(
        nb.Matrix([[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]))
    sg1 = transformation**sg
    sg2 = geo.Spacegroup(transformation**geo.canonical, [
        geo.Coset(geo.Symmetry(nb.Matrix.onematrix(4)), geo.canonical),
        geo.Coset(
            geo.Symmetry(
                nb.Matrix([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],
                           [0, 0, 0, 1]])), geo.canonical)
    ])

    assert sg.is_really_a_spacegroup() == True
    sg_error = geo.Spacegroup(geo.canonical, [
        geo.Coset(geo.Symmetry(nb.Matrix.onematrix(4)), geo.canonical),
        geo.Coset(
            geo.Symmetry(
                nb.Matrix([[1, 0, 0, fr.Fraction(1, 4)], [0, 1, 0, 0],
                           [0, 0, 1, 0], [0, 0, 0, 1]])), geo.canonical)
    ])
    assert sg_error.is_really_a_spacegroup() == False
예제 #3
0
def test_Transgen():
    tg = geo.Transgen(geo.Dif(nb.Matrix([[1], [0], [0], [0]])),
                      geo.Dif(nb.Matrix([[0], [0], [2], [0]])),
                      geo.Dif(nb.Matrix([[0], [3], [0], [0]])))
    assert tg.__str__() == "Transgen /  1  \   /  0  \   /  0  \ \n"\
                           "        |   0   | |   0   | |   3   |\n"\
                           "         \  0  /   \  2  /   \  0  / "
예제 #4
0
def test_Atom():
    atom1 = cr.Atom("Cs1", "Cs", fs("p 0 0 0"))
    assert atom1.has_color == False
    assert atom1.__str__() == \
        "Atom Cs1 Cs Pos /  0  \ \n" \
        "               |   0   |\n" \
        "                \  0  / "
    assert (atom1 + "hallo").name == atom1.name + "hallo"
    atom2 = cr.Atom("Cs2", "Cs", fs("p 0 0 0"))
    assert atom2 == atom1
    assert hash(atom2) == hash(atom1)
    assert {atom2} == {atom1}
    atom3 = cr.Atom("Cs3", "Cs", fs("p0.1 0 0"))
    assert atom3 != atom1
    atom4 = cr.Atom("Cs1", "Fe", fs("p 0 0 0"))
    assert atom4 != atom1

    atom5 = cr.Atom("Cs1", "Cs", fs("p 0.1234 0 0"))
    atom6 = cr.Atom("Cs2", "Cs", fs("p 0.1234000000001 0 0"))
    assert hash(atom5) == hash(atom6)
    assert atom5 == atom6

    atom = cr.Atom("Cl1", "Cl", fs("p 1/2 1/2 1/2"))
    transformation = fs("O->(0,0,0) \n"
                        "then\n"
                        "a' = a \n"
                        "b' = 2b \n"
                        "c' = c")
    atom_trans = cr.Atom("Cl1", "Cl", fs("p 1/2 1/4 1/2"))
    assert (transformation ** atom).__str__() == atom_trans.__str__()

    sym = fs("-x+1/2,-y+1/2, z")
    atom_sym = cr.Atom("Cl1", "Cl", fs("p0 0 1/2"))
    assert (sym ** atom).__str__() == atom_sym.__str__()

    coset = fs("{x, -y, z+1}")
    atom = cr.Atom("Cl1", "Cl", fs("p 1/2 1/4 1/2"))
    atom1 = coset ** atom
    atom2 = cr.Atom("Cl1", "Cl", fs("p 1/2 3/4 1/2"))
    assert atom1.__str__() == atom2.__str__()

    transgen = geo.Transgen(fs("d 1 0 0"),
                            fs("d 0 1 0"),
                            fs("d 0 0 2"))
    atom = cr.Atom("Cl1", "Cl", fs("p 1/2 5/4 -1/2"))
    atom1 = atom % transgen
    atom2 = cr.Atom("Cl1", "Cl", fs("p 1/2 1/4 3/2"))
    assert atom1 == atom2

    d = fs("d 1/2 0 0")
    atom1 = cr.Atom("Cl1", "Cl", fs("p 0 0 0"))
    atom2 = cr.Atom("Cl1", "Cl", fs("p 1/2 0 0"))
    atom3 = atom1 + d
    assert atom2 == atom3
예제 #5
0
def test_operations():
    # Here I want to test all operations between equal and different types.
    # It shall be as follows:
    #
    #         *         | Symmetry    Transformation   Transgen   Coset  Pos Dif Metric  Spacegroup
    # ----------------------------------------------------------------------------------------------
    #   Symmetry        | Symmetry         -              -         -     -   -    -          -
    #   Transformation  |    -        Transformation      -         -     -   -    -          -
    #   Transgen        |    -             -              -         -     -   -    -          -
    #   Coset           |    -             -              -       Coset   -   -    -          -
    #   Pos             |    -             -              -         -     -   -    -          -
    #   Dif             |    -             -              -         -     -   -    -          -
    #   Metric          |    -             -              -         -     -   -    -          -
    #   Spacegroup      |    -             -              -         -     -   -    -          -
    #
    #
    #         **        | Symmetry  Transformation  Transgen  Coset    Pos   Dif Metric  Spacegroup
    # -----------------------------------------------------------------------------------------------
    #   Symmetry        |    -             -           -        -      Pos   Dif   -         -
    #   Transformation  | Symmetry         -        Transgen  Coset    Pos   Dif Metric  Spacegroup
    #   Transgen        |    -             -           -        -       -     -    -         -
    #   Coset           |    -             -           -        -      Pos   Dif   -         -
    #   Pos             |    -             -           -        -       -     -    -         -
    #   Dif             |    -             -           -        -       -     -    -         -
    #   Metric          |    -             -           -        -       -     -    -         -
    #   Spacegroup      |    -             -           -        -       -     -    -         -
    #
    #
    #         %         | Symmetry  Transformation   Transgen  Coset   Pos   Dif Metric  Spacegroup
    #  ---------------------------------------------------------------------------------------------
    #   Symmetry        |    -            -          Symmetry    -      -     -    -         -
    #   Transformation  |    -            -             -        -      -     -    -         -
    #   Transgen        |    -            -             -        -      -     -    -         -
    #   Coset           |    -            -           Coset      -      -     -    -         -
    #   Pos             |    -            -            Pos       -      -     -    -         -
    #   Dif             |    -            -            Dif       -      -     -    -         -
    #   Metric          |    -            -             -        -      -     -    -         -
    #   Spacegroup      |    -            -          Spacegroup  -      -     -    -         -

    # Coset needs some pow()-declarations, so first I test everything else:
    symmetry = geo.Symmetry(nb.Matrix([[-1,  0, 0, 0],
                                       [0, -1, 0, 0],
                                       [0,  0, 1, 0],
                                       [0,  0, 0, 1]]))
    transformation = geo.Transformation(nb.Matrix([[0, 1, 0, 0],
                                                   [1, 0, 0, 0],
                                                   [0, 0, 2, 0],
                                                   [0, 0, 0, 1]]))
    transgen = geo.canonical
    pos = geo.Pos(nb.Matrix([[1], [2], [3], [1]]))
    dif = geo.Dif(nb.Matrix([[4], [5], [6], [0]]))
    metric = geo.Metric(nb.Matrix([[4, 0, 0, 0],
                                   [0, 9, 0, 0],
                                   [0, 0, 1, 0],
                                   [0, 0, 0, 1]]))
    spacegroup = geo.Spacegroup(geo.canonical,
        [geo.Coset(geo.Symmetry(nb.Matrix.onematrix(4)), geo.canonical),
         geo.Coset(geo.Symmetry(nb.Matrix([[-1,  0,  0, 0],
                                           [0, -1,  0, 0],
                                           [0,  0, -1, 0],
                                           [0,  0,  0, 1]])), geo.canonical)])

    # * :
    #====

    # symmetry * symmetry:
    assert isinstance(symmetry * symmetry, geo.Symmetry)

    # transformation * transformation
    assert isinstance(transformation * transformation, geo.Transformation)

    # **:
    #====

    # symmetry ** pos:
    assert isinstance(symmetry ** pos, geo.Pos)

    # symmetry ** dif:
    assert isinstance(symmetry ** dif, geo.Dif)

    # transformation ** symmetry:
    assert isinstance(transformation ** symmetry, geo.Symmetry)

    # transformation ** transgen:
    assert isinstance(transformation ** transgen, geo.Transgen)

    # transformation ** pos:
    assert isinstance(transformation ** pos, geo.Pos)

    # transformation ** dif:
    assert isinstance(transformation ** dif, geo.Dif)

    # transformation ** metric:
    assert isinstance(transformation ** metric, geo.Metric)

    # transformation ** spacegroup:
    assert isinstance(transformation ** spacegroup, geo.Spacegroup)

    # %:
    #===

    # symmetry % transgen:
    assert isinstance(symmetry % transgen, geo.Symmetry)

    # pos % transgen:
    assert isinstance(pos % transgen, geo.Pos)
    transgen1 = geo.Transgen(geo.Dif(nb.Matrix([[1], [0], [0], [0]])),
                             geo.Dif(nb.Matrix([[0], [1], [0], [0]])),
                             geo.Dif(nb.Matrix([[0], [0], [2], [0]])))
    pos1 = geo.Pos(nb.Matrix([[0], [0], [fr.Fraction(3, 2)], [1]]))
    pos1_ = geo.Pos(nb.Matrix([[0], [0], [fr.Fraction(3, 2)], [1]]))
    assert pos1 % transgen1 == pos1_

    transgen1 = geo.Transgen(geo.Dif(nb.Matrix([[0], [0], [2], [0]])),
                             geo.Dif(nb.Matrix([[0], [1], [0], [0]])),
                             geo.Dif(nb.Matrix([[1], [0], [0], [0]])))
    pos1 = geo.Pos(nb.Matrix([[0], [0], [fr.Fraction(3, 2)], [1]]))
    pos1_ = geo.Pos(nb.Matrix([[0], [0], [fr.Fraction(3, 2)], [1]]))
    assert pos1 % transgen1 == pos1_

    # dif % transgen:
    assert isinstance(dif % transgen, geo.Dif)

    transgen1 = geo.Transgen(geo.Dif(nb.Matrix([[0], [0], [2], [0]])),
                             geo.Dif(nb.Matrix([[0], [1], [0], [0]])),
                             geo.Dif(nb.Matrix([[1], [0], [0], [0]])))
    dif1 = geo.Dif(nb.Matrix([[0], [0], [fr.Fraction(3, 2)], [0]]))
    dif1_ = geo.Dif(nb.Matrix([[0], [0], [fr.Fraction(3, 2)], [0]]))
    assert dif1 % transgen1 == dif1_

    # spacegroup % transgen:
    assert isinstance(spacegroup % transgen, geo.Spacegroup)

    # Here comes Coset:
    #==================

    coset = geo.Coset(symmetry, transgen)

    # coset * coset:
    assert isinstance(coset * coset, geo.Coset)

    # coset ** pos:
    assert isinstance(coset ** pos, geo.Pos)

    # coset ** dif:
    assert isinstance(coset ** dif, geo.Dif)

    # coset % transgen:
    assert isinstance(coset % transgen, geo.Coset)

    transgen1 = geo.Transgen(geo.Dif(nb.Matrix([[0], [0], [2], [0]])),
                             geo.Dif(nb.Matrix([[0], [1], [0], [0]])),
                             geo.Dif(nb.Matrix([[1], [0], [0], [0]])))
    coset1 = geo.Coset(geo.Symmetry(nb.Matrix([[1, 0, 0, fr.Fraction(3, 2)],
                                               [0, 1, 0, fr.Fraction(3, 2)],
                                               [0, 0, 1, fr.Fraction(7, 2)],
                                               [0, 0, 0, 1]])), transgen1)
    coset1_ = geo.Coset(geo.Symmetry(nb.Matrix([[1, 0, 0, fr.Fraction(1, 2)],
                                                [0, 1, 0, fr.Fraction(1, 2)],
                                                [0, 0, 1, fr.Fraction(3, 2)],
                                                [0, 0, 0, 1]])), transgen1)
    assert coset1 % transgen1 == coset1_