예제 #1
0
def symmetryfromstr(string):
    words = string.split(',')
    assert len(words) == 3, \
        "The following string looks like a Symmetry, but it has not "\
        "three comma-separated terms: %s" % (string)
    liste = []
    for word in words:
        row = nb.Row(str2linearterm(word, ['x', 'y', 'z']))
        liste.append(row)
    liste.append(
        nb.Row([fromstr("0"),
                fromstr("0"),
                fromstr("0"),
                fromstr("1")]))
    return geo.Symmetry(nb.Matrix(liste))
예제 #2
0
 def to_Metric(self):
     a = self.a
     b = self.b
     c = self.c
     alpha = self.alpha
     beta = self.beta
     gamma = self.gamma
     aa = a * a
     bb = b * b
     cc = c * c
     ab = a * b * nb.cos(nb.deg2rad(gamma))
     ac = a * c * nb.cos(nb.deg2rad(beta))
     bc = b * c * nb.cos(nb.deg2rad(alpha))
     return Metric(
         nb.Matrix([
             nb.Row([aa, ab, ac, 0]),
             nb.Row([ab, bb, bc, 0]),
             nb.Row([ac, bc, cc, 0]),
             nb.Row([0, 0, 0, 1])
         ]))
예제 #3
0
 def __init__(self, value):
     assert isinstance(value, nb.Matrix), \
         "Must be created by an object of type Matrix."
     assert value.shape() == (4, 4), \
         "Must be created by a 4x4-Matrix."
     assert value.liste[3] == nb.Row([0, 0, 0, 1]), \
         "Must be created by a 4x4-Matrix of this shape: \n"\
         "   * * * * \n"\
         "   * * * * \n"\
         "   * * * * \n"\
         "   0 0 0 1 \n"
     self.value = value
예제 #4
0
 def __str__(self):
     result = 'Transformation '
     m = self.value.inv()
     Ox = m.liste[0].liste[3]
     Oy = m.liste[1].liste[3]
     Oz = m.liste[2].liste[3]
     matrix = nb.Matrix([[1, 0, 0, Ox], [0, 1, 0, Oy], [0, 0, 1, Oz],
                         [0, 0, 0, 1]])
     result = "Transformation O -> (%s, %s, %s)\n" \
              "               then\n" % \
     (Ox.__str__(), Oy.__str__(), Oz.__str__())
     matrix = nb.Matrix([
         nb.Row([
             m.liste[0].liste[0], m.liste[1].liste[0], m.liste[2].liste[0],
             0
         ]),
         nb.Row([
             m.liste[0].liste[1], m.liste[1].liste[1], m.liste[2].liste[1],
             0
         ]),
         nb.Row([
             m.liste[0].liste[2], m.liste[1].liste[2], m.liste[2].liste[2],
             0
         ]),
         nb.Row([
             m.liste[3].liste[0], m.liste[3].liste[1], m.liste[3].liste[2],
             1
         ])
     ])
     terms = []
     for i in range(3):
         print(matrix.liste[i].liste[0], matrix.liste[i].liste[1],
               matrix.liste[i].liste[2], matrix.liste[i].liste[3])
         terms.append(
             linearterm2str(matrix.liste[i].liste, ["a", "b", "c", '']))
     return result + "               a' = " + terms[0] + "\n" \
                   + "               b' = " + terms[1] + "\n" \
                   + "               c' = " + terms[2]
예제 #5
0
 def __init__(self, b1, b2, b3):
     assert  isinstance(b1, Dif) \
         and isinstance(b2, Dif) \
         and isinstance(b3, Dif), \
         "Arguments must be of type Dif."
     self.liste = [b1, b2, b3]
     m00 = b1.value.liste[0].liste[0]
     m01 = b2.value.liste[0].liste[0]
     m02 = b3.value.liste[0].liste[0]
     m10 = b1.value.liste[1].liste[0]
     m11 = b2.value.liste[1].liste[0]
     m12 = b3.value.liste[1].liste[0]
     m20 = b1.value.liste[2].liste[0]
     m21 = b2.value.liste[2].liste[0]
     m22 = b3.value.liste[2].liste[0]
     self.transformation = Transformation(
         nb.Matrix([
             nb.Row([m00, m01, m02, 0]),
             nb.Row([m10, m11, m12, 0]),
             nb.Row([m20, m21, m22, 0]),
             nb.Row([0, 0, 0, 1])
         ]))
     self.transformationinv = self.transformation.inv()
예제 #6
0
 def __init__(self, value):
     assert isinstance(value, nb.Matrix), \
         "Must be created by an object of type Matrix."
     assert value.shape() == (4, 4), \
         "Must be created by a 4x4-Matrix."
     assert  (value.liste[3] == nb.Row([0, 0, 0, 1])) \
         and (value.liste[0].liste[3] == 0) \
         and (value.liste[1].liste[3] == 0) \
         and (value.liste[2].liste[3] == 0), \
         "Argument must be a Matrix of this shape:\n" \
         "     * * * 0\n" \
         "     * * * 0\n" \
         "     * * * 0\n" \
         "     0 0 0 1"
     self.value = value
     self.valueinv = value.inv()
     self.schmidttransformation = self.calculate_schmidttransformation()
예제 #7
0
def matrixfromstr(string):
    string = string.replace('|', '\\')
    string = re.sub('\/ | \/|[<>]', ' ', string)
    #    string = string.replace('/ ', ' ')
    #    string = string.replace('<', ' ')
    #    string = string.replace('>', ' ')
    #    string = string.replace(' /', ' ')
    string = string.replace('\n', '\\')
    #    string = re.sub('\\\\ +\\\\', '\\', string)
    for i in range(4):
        string = string.replace('\\ \\', '\\')
        string = string.replace('\\  \\', '\\')
        string = string.replace('\\   \\', '\\')
    rowwords = string.split('\\')
    rowliste = []
    for rowword in rowwords:
        words = rowword.split()
        liste = []
        for word in words:
            liste.append(mixedfromstr(word))
        rowliste.append(nb.Row(liste))
    return nb.Matrix(rowliste)
예제 #8
0
def transformationfromstr(string):
    if len(string.split("then")) > 1:
        # The string respresents not an elementar transformation,
        # i.e. the string represents a transformation which is
        # a composition of elementar transformations.
        result = geo.Transformation(nb.Matrix.onematrix(4))
        for word in string.split("\nthen\n"):
            result = transformationfromstr(word) * result
        return result
    else:
        # The string represents an elementar transformation,
        # i.e. either a pure translation of the origin or a
        # pure change of the axes.
        if ('O' in string) or ("->" in string):
            # The string represents a pure translation of the origin.
            words = string.split("->")
            word = words[1]
            word = word.replace('\n', ' ')
            word = word.replace('(', ' ').replace(')', ' ').replace(',', ' ')
            threenumbers = fromstr(word)
            matrix = nb.Matrix([[1, 0, 0, -threenumbers.liste[0].liste[0]],
                                [0, 1, 0, -threenumbers.liste[0].liste[1]],
                                [0, 0, 1, -threenumbers.liste[0].liste[2]],
                                [0, 0, 0, 1]])
            return geo.Transformation(matrix)
        elif ('a' in string) or ('b' in string) or ('c' in string):
            # The string represents a pure change of the axes
            lines = string.split('\n')
            assert len(lines) == 3, \
                "The following string looks like a Transformation, " \
                "but it has not exactly three lines: %s" % (string)
            liste = []
            i = 0
            for line in lines:
                if len(line.split(' ')) > 0:
                    i += 1
                    words = line.split(' ')
                    assert  (    ((i == 1) and (words[0] == "a'"))
                                 or ((i == 2) and (words[0] == "b'"))
                                 or ((i == 3) and (words[0] == "c'"))  )\
                        and (words[1] == '='), \
                        "The Transformation must have the following form: \n" \
                        "a' = ... \n" \
                        "b' = ... \n" \
                        "c' = ... \n" \
                        "in this Order!"
                    words = line.split('=')
                    row = nb.Row(str2linearterm(words[1], ['a', 'b', 'c']))
                    liste.append(row)
            liste.append(
                nb.Row(
                    [fromstr("0"),
                     fromstr("0"),
                     fromstr("0"),
                     fromstr("1")]))
            m = nb.Matrix(liste)
            matrix = nb.Matrix([
                nb.Row([
                    m.liste[0].liste[0], m.liste[1].liste[0],
                    m.liste[2].liste[0], 0
                ]),
                nb.Row([
                    m.liste[0].liste[1], m.liste[1].liste[1],
                    m.liste[2].liste[1], 0
                ]),
                nb.Row([
                    m.liste[0].liste[2], m.liste[1].liste[2],
                    m.liste[2].liste[2], 0
                ]),
                nb.Row([0, 0, 0, 1])
            ])

        return geo.Transformation(matrix.inv())
예제 #9
0
def test_Row():

    # Create
    e = uc.ufloat(1.2, 0.1)
    R = nb.Row([nb.Mixed(fr.Fraction(1, 2)),
                nb.Mixed(e),
                nb.Mixed(1),
                nb.Mixed(0.5)])
    assert isinstance(R.liste, list)
    assert isinstance(R.liste[0], nb.Mixed)
    assert isinstance(R.liste[0].value, fr.Fraction)
    assert R.liste[0] == nb.Mixed(fr.Fraction(1, 2))
    assert isinstance(R.liste[1], nb.Mixed)
    assert isinstance(R.liste[1].value, uc.UFloat)
    assert R.liste[1] == nb.Mixed(e)
    assert isinstance(R.liste[2], nb.Mixed)
    assert isinstance(R.liste[2].value, int)
    assert R.liste[2] == nb.Mixed(1)
    assert isinstance(R.liste[3], nb.Mixed)
    assert isinstance(R.liste[3].value, float)
    assert approx(R.liste[3].value, 0.5)

    R = nb.Row([fr.Fraction(1, 2),
                e,
                1,
                0.5])
    assert isinstance(R.liste, list)
    assert isinstance(R.liste[0], nb.Mixed)
    assert isinstance(R.liste[0].value, fr.Fraction)
    assert R.liste[0] == nb.Mixed(fr.Fraction(1, 2))
    assert isinstance(R.liste[1], nb.Mixed)
    assert isinstance(R.liste[1].value, uc.UFloat)
    assert R.liste[1] == nb.Mixed(e)
    assert isinstance(R.liste[2], nb.Mixed)
    assert isinstance(R.liste[2].value, int)
    assert R.liste[2] == nb.Mixed(1)
    assert isinstance(R.liste[3], nb.Mixed)
    assert isinstance(R.liste[3].value, float)
    assert approx(R.liste[3].value, 0.5)

    # len

    R = nb.Row([fr.Fraction(1, 2),
                uc.ufloat(1.2, 0.1),
                1,
                0.5])
    assert len(R) == 4

    assert R.__str__() == "(  1/2  1.20(10)  1  0.5  )"

    # Equal

    e = uc.ufloat(1.2, 0.1)
    R1 = nb.Row([fr.Fraction(1, 2),
                e,
                1,
                0.5])
    R2 = nb.Row([fr.Fraction(1, 2),
                e,
                1,
                0.5])
    R2wrong = nb.Row([fr.Fraction(1, 2),
                      uc.ufloat(1.2, 0.1),
                      1,
                      0.5])
    R3 = nb.Row([fr.Fraction(1, 2),
                e,
                1,
                fr.Fraction(1, 2)])
    R4 = nb.Row([fr.Fraction(1, 2),
                e,
                1])

    assert R1 == R2
    assert (R1 == R2wrong) == False
    assert (R1 == R3) == False
    assert (R1 == R4) == False
    assert (R1 == 5) == False

    # Hash
    R1 = nb.Row([0, 0, 1.00000000])
    R2 = nb.Row([0, 0, 0.99999999])
    assert hash(R1) == hash(R2)
    e1 = uc.ufloat(1.2, 0.1)
    R1 = nb.Row([0, 0, e1])
    R2 = nb.Row([0, 0, e1])
    R3 = nb.Row([0, 0, uc.ufloat(1.2, 0.1)])
    assert hash(R1) == hash(R2)
    assert (hash(R1) == hash(R3)) == False


    # canonical

    assert nb.Row.canonical(5, 3) == nb.Row([0, 0, 0, 1, 0])

    # block

    R = nb.Row([1, 2, 3, 4])
    assert R.block(1, 3) == nb.Row([2, 3])

    # Addition

    R1 = nb.Row([1, 2, fr.Fraction(1, 2)])
    R2 = nb.Row([2, 3, 4])
    assert R1 + R2 == nb.Row([3, 5, fr.Fraction(9, 2)])

    # Subtraction

    R1 = nb.Row([1, 2, fr.Fraction(1, 2)])
    R2 = nb.Row([2, 3, 4])
    assert R1 - R2 == nb.Row([-1, -1, fr.Fraction(-7, 2)])

    # Multiplication

    R1 = nb.Row([1, 2, fr.Fraction(1, 2)])
    assert R1 * nb.Mixed(2) == nb.Row([2, 4, 1])
    assert nb.Mixed(2) * R1 == nb.Row([2, 4, 1])
    assert R1 * 2 == nb.Row([2, 4, 1])
    assert 2 * R1 == nb.Row([2, 4, 1])

    # neg
    R1 = nb.Row([1, 2, 3])
    assert -R1 == nb.Row([-1, -2, -3])
예제 #10
0
def test_Matrix():

    # create and shape

    M1 = nb.Matrix([nb.Row([1, 2, 3]), nb.Row([4, 5, 6])])
    M2 = nb.Matrix([[1, 2, 3], [4, 5, 6]])
    assert M1.shape() == (2, 3)
    assert M2.shape() == (2, 3)

    # Equal

    M1 = nb.Matrix([nb.Row([1, 2, 3]), nb.Row([4, 5, 6])])
    M2 = nb.Matrix([[1, 2, 3], [4, 5, 6]])
    M3 = nb.Matrix([[1, 2, 3], [4, 5.1, 6]])
    M4 = nb.Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    M5 = nb.Matrix([[1, 2], [4, 5]])
    M6 = nb.Matrix([[1, 2, 3], [4, 5.0, 6]])
    M7 = nb.Matrix([[1, 2, 3], [4, fr.Fraction(5, 1), 6]])
    assert M1 == M2
    assert (M1 == M3) == False
    assert (M1 == M4) == False
    assert (M1 == M5) == False
    assert (M1 == M6) == False
    assert M1 == M7

    M1 = nb.Matrix([nb.Row([1, 2, 3.0]), nb.Row([4, 5, 6])])
    M2 = nb.Matrix([nb.Row([1, 2, 2.999999999999]), nb.Row([4, 5, 6])])
    print(hash(M1))
    print(hash(M2))
    assert hash(M1) == hash(M2)

    e = uc.ufloat(1.2, 0.1)
    M1 = nb.Matrix([nb.Row([1, 2, e]), nb.Row([4, 5, 6])])
    M2 = nb.Matrix([nb.Row([1, 2, e]), nb.Row([4, 5, 6])])
    M3 = nb.Matrix([nb.Row([1, 2, uc.ufloat(1.2, 0.1)]), nb.Row([4, 5, 6])])
    assert M1 == M2
    assert (M1 == M3) == False
    assert hash(M1) == hash(M2)
    assert (hash(M1) == hash(M3)) == False

    # print

    assert nb.Matrix([[1, 2]]).__str__() == " <  1  2  > "
    assert nb.Matrix([[1, 2], [3, 4]]).__str__() == " /  1  2  \ \n" \
                                                    " \  3  4  / "
    assert nb.Matrix([[1, 2, 3], [4, 5, 6], [7, 800, 9]]).__str__() == \
        " /  1    2  3  \ \n" \
        "|   4    5  6   |\n" \
        " \  7  800  9  / "

    # Addition

    assert nb.Matrix([[1, 2], [3, 4]]) + nb.Matrix([[5, 6], [7, 8]]) == \
        nb.Matrix([[6, 8], [10, 12]])

    assert nb.Matrix([[1, 2], [3, 4], [5, 6]]) + \
           nb.Matrix([[1, 1], [1, 1], [1, 1]]) == \
           nb.Matrix([[2, 3], [4, 5], [6, 7]])

    # Subtraction

    assert nb.Matrix([[1, 2], [3, 4]]) - nb.Matrix([[5, 6], [7, 8]]) == \
        nb.Matrix([[-4, -4], [-4, -4]])

    assert nb.Matrix([[1, 2], [3, 4], [5, 6]]) - \
           nb.Matrix([[1, 1], [1, 1], [1, 1]]) == \
           nb.Matrix([[0, 1], [2, 3], [4, 5]])

    # neg

    M1 = nb.Matrix([[1, 2, 3], [4, 5, 6]])
    assert -M1 == nb.Matrix([[-1, -2, -3], [-4, -5, -6]])

    # Multiplication "Matrix * Matrix"

    M1 = nb.Matrix([[1, 2], [3, 4]])
    M2 = nb.Matrix([[5, 6], [7, 8]])
    assert isinstance(M1 * M2, nb.Matrix)
    assert M1 * M2 == nb.Matrix([[19, 22], [43, 50]])

    M1 = nb.Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
    M2 = nb.Matrix([[uc.ufloat(1.2, 0.1)], [1], [2]])
    print(M2)
    print(M1*M2)
    assert (M1 * M2).liste[1].liste[0] == M2.liste[1].liste[0]
    assert M1 * M2 == M2


    # Multiplication "Scalar * Matrix"

    M1 = nb.Matrix([[1, 2], [3, 4]])
    assert M1 * nb.Mixed(fr.Fraction(1, 2)) == \
        nb.Matrix([[fr.Fraction(1, 2), 1], [fr.Fraction(3, 2), 2]])
    assert M1 * fr.Fraction(1, 2) == \
        nb.Matrix([[fr.Fraction(1, 2), 1], [fr.Fraction(3, 2), 2]])
    assert nb.Mixed(fr.Fraction(1, 2)) * M1 == \
        nb.Matrix([[fr.Fraction(1, 2), 1], [fr.Fraction(3, 2), 2]])
    assert fr.Fraction(1, 2) * M1 == \
        nb.Matrix([[fr.Fraction(1, 2), 1], [fr.Fraction(3, 2), 2]])

    M = M1 * nb.Mixed(uc.ufloat(1.2, 0.1))
    assert approx(M.liste[0].liste[0].value.n, 1.2)
    assert approx(M.liste[0].liste[0].value.s, 0.1)
    assert approx(M.liste[0].liste[1].value.n, 2.4)
    assert approx(M.liste[0].liste[1].value.s, 0.2)
    assert approx(M.liste[1].liste[0].value.n, 3.6)
    assert approx(M.liste[1].liste[0].value.s, 0.3)
    assert approx(M.liste[1].liste[1].value.n, 4.8)
    assert approx(M.liste[1].liste[1].value.s, 0.4)
    M = M1 * uc.ufloat(1.2, 0.1)
    assert approx(M.liste[0].liste[0].value.n, 1.2)
    assert approx(M.liste[0].liste[0].value.s, 0.1)
    assert approx(M.liste[0].liste[1].value.n, 2.4)
    assert approx(M.liste[0].liste[1].value.s, 0.2)
    assert approx(M.liste[1].liste[0].value.n, 3.6)
    assert approx(M.liste[1].liste[0].value.s, 0.3)
    assert approx(M.liste[1].liste[1].value.n, 4.8)
    assert approx(M.liste[1].liste[1].value.s, 0.4)
    M = nb.Mixed(uc.ufloat(1.2, 0.1)) * M1
    assert approx(M.liste[0].liste[0].value.n, 1.2)
    assert approx(M.liste[0].liste[0].value.s, 0.1)
    assert approx(M.liste[0].liste[1].value.n, 2.4)
    assert approx(M.liste[0].liste[1].value.s, 0.2)
    assert approx(M.liste[1].liste[0].value.n, 3.6)
    assert approx(M.liste[1].liste[0].value.s, 0.3)
    assert approx(M.liste[1].liste[1].value.n, 4.8)
    assert approx(M.liste[1].liste[1].value.s, 0.4)
    M = uc.ufloat(1.2, 0.1) * M1
    assert approx(M.liste[0].liste[0].value.n, 1.2)
    assert approx(M.liste[0].liste[0].value.s, 0.1)
    assert approx(M.liste[0].liste[1].value.n, 2.4)
    assert approx(M.liste[0].liste[1].value.s, 0.2)
    assert approx(M.liste[1].liste[0].value.n, 3.6)
    assert approx(M.liste[1].liste[0].value.s, 0.3)
    assert approx(M.liste[1].liste[1].value.n, 4.8)
    assert approx(M.liste[1].liste[1].value.s, 0.4)

    assert M1 * nb.Mixed(2) == nb.Matrix([[2, 4], [6, 8]])
    assert M1 * 2 == nb.Matrix([[2, 4], [6, 8]])
    assert nb.Mixed(2) * M1 == nb.Matrix([[2, 4], [6, 8]])
    assert 2 * M1 == nb.Matrix([[2, 4], [6, 8]])

    M = M1 * nb.Mixed(2.5)
    assert approx(M.liste[0].liste[0].value, 2.5)
    assert approx(M.liste[0].liste[1].value, 5.0)
    assert approx(M.liste[1].liste[0].value, 7.5)
    assert approx(M.liste[1].liste[1].value, 10.0)
    M = M1 * 2.5
    assert approx(M.liste[0].liste[0].value, 2.5)
    assert approx(M.liste[0].liste[1].value, 5.0)
    assert approx(M.liste[1].liste[0].value, 7.5)
    assert approx(M.liste[1].liste[1].value, 10.0)
    M = nb.Mixed(2.5) * M1
    assert approx(M.liste[0].liste[0].value, 2.5)
    assert approx(M.liste[0].liste[1].value, 5.0)
    assert approx(M.liste[1].liste[0].value, 7.5)
    assert approx(M.liste[1].liste[1].value, 10.0)
    M = 2.5 * M1
    assert approx(M.liste[0].liste[0].value, 2.5)
    assert approx(M.liste[0].liste[1].value, 5.0)
    assert approx(M.liste[1].liste[0].value, 7.5)
    assert approx(M.liste[1].liste[1].value, 10.0)

    # onematrix

    assert nb.Matrix.onematrix(2) == nb.Matrix([[1, 0], [0, 1]])
    assert nb.Matrix.onematrix(3) == nb.Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

    # block

    M = nb.Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    assert M.block(0, 2, 0, 2) == nb.Matrix([[1, 2], [4, 5]])
    assert M.block(1, 2, 0, 3) == nb.Matrix([[4, 5, 6]])
    M = nb.Matrix([[1, 2, 3, 4]])
    assert M.block(0, 1, 0, 3) == nb.Matrix([[1, 2, 3]])

    # swap_rows

    M = nb.Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    assert M.swap_rows(0, 1) == nb.Matrix([[4, 5, 6], [1, 2, 3], [7, 8, 9]])

    # vglue

    M1 = nb.Matrix([[1, 2, 3]])
    M2 = nb.Matrix([[4, 5, 6]])
    assert nb.Matrix.vglue(M1, M2) == nb.Matrix([[1, 2, 3], [4, 5, 6]])

    # subtract_x_times_rowj_from_rowi

    M = nb.Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    assert M.subtract_x_times_rowj_from_rowi(2, 2, 0) == \
        nb.Matrix([[1, 2, 3], [4, 5, 6], [5, 4, 3]])

    # inv

    assert nb.Matrix([[2, 3],
                      [4, 5]]).inv() == \
        nb.Matrix([[-fr.Fraction(5, 2), fr.Fraction(3, 2)],
                   [2,                -1]])
    assert nb.Matrix([[0, 1,  1],
                      [1, 0,  0],
                      [0, 0, -1]]).inv() == \
           nb.Matrix([[0, 1,  0],
                      [1, 0,  1],
                      [0, 0, -1]])

    assert nb.Matrix([[0, 0, 1, 0],
                      [1, 0, 0, 0],
                      [0, 1, 0, 0],
                      [0, 0, 0, 1]]).inv() == \
           nb.Matrix([[0, 1, 0, 0],
                      [0, 0, 1, 0],
                      [1, 0, 0, 0],
                      [0, 0, 0, 1]])

    # transpose

    assert nb.Matrix([[1, 2, 3], [4, 5, 6]]).transpose() == \
           nb.Matrix([[1, 4], [2, 5], [3, 6]])

    # delete_ith_row_and_first_column
    M = nb.Matrix([[1, 2, 3, 4],
                   [5, 6, 7, 8],
                   [9, 10, 11, 12]])
    assert M.delete_ith_row_and_first_column(1) == nb.Matrix([[2, 3, 4],
                                                              [10, 11, 12]])

    # det
    M = nb.Matrix([[3]])
    assert M.det() == 3
    M = nb.Matrix([[1, 2],
                   [3, 4]])
    assert M.det() == -2
    M = nb.Matrix([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]])
    assert M.det() == 0
    M = nb.Matrix([[1, 2, 3, 4],
                   [5, 6, 7, 8],
                   [9, 8, 11, 12],
                   [13, 14, 15, 17]])
    assert M.det() == -16

    # delete_translation

    M = nb.Matrix([[1,  2,  3,  4],
                   [5,  6,  7,  8],
                   [9, 10, 11, 12],
                   [0,  0,  0,  1]])

    assert M.delete_translation() == nb.Matrix([[1,  2,  3, 0],
                                              [5,  6,  7, 0],
                                              [9, 10, 11, 0],
                                              [0,  0,  0, 1]])
예제 #11
0
def test_fromstr():
    string = "1/2"
    assert isinstance(fs(string), nb.Mixed)
    assert fs(string) == nb.Mixed(fr.Fraction(1, 2))
    string = "1.2+/-0.1"
    assert fs(string).value.n == nb.Mixed(uc.ufloat(1.2, 0.1)).value.n
    assert fs(string).value.s == nb.Mixed(uc.ufloat(1.2, 0.1)).value.s
    string = "1.2(1)"
    assert fs(string).value.n == nb.Mixed(uc.ufloat(1.2, 0.1)).value.n
    assert fs(string).value.s == nb.Mixed(uc.ufloat(1.2, 0.1)).value.s
    string = "4"
    assert fs(string) == nb.Mixed(fr.Fraction(4, 1))
    string = "4.5"
    assert fs(string) == nb.Mixed(4.5)

    string = "1 2 3"
    assert fromstr.typefromstr(string) == nb.Matrix
    assert fs(string) == nb.Matrix([[1, 2, 3]])

    string = "/ 1 2 \ \n \ 3 4 /"
    assert fs(string) == \
        nb.Matrix([nb.Row([nb.Mixed(1), nb.Mixed(2)]),
                   nb.Row([nb.Mixed(3), nb.Mixed(4)])])
    string = "1 2 \n 3 4"
    assert fs(string) == \
        nb.Matrix([nb.Row([nb.Mixed(1), nb.Mixed(2)]),
                   nb.Row([nb.Mixed(3), nb.Mixed(4)])])
    string = "x+y,y - x +1/3,2z"
    g = fs(string)
    assert g == geo.Symmetry(
        fs("/ 1 1 0 0 \n"
           " -1 1 0 1/3 \n"
           "  0 0 2 0 \n"
           "  0 0 0 1"))
    string = "O->(0,0,0)\n" \
             "then\n" \
             "a' = a-b \n" \
             "b' = b+a \n" \
             "c' = 2c"
    g = fs(string)
    assert g == geo.Transformation(
        fs(" 1 1 0 0 \n"
           "-1 1 0 0 \n"
           " 0 0 2 0 \n"
           " 0 0 0 1").inv())

    string = "O->(0,0,0) \n" \
             "then\n" \
             "a' = c \n" \
             "b' = a \n" \
             "c' = b"
    g = fs(string)
    assert g == geo.Transformation(
        fs("0 1 0 0 \n"
           "0 0 1 0 \n"
           "1 0 0 0 \n"
           "0 0 0 1").inv())
    string = "O -> (1/2, 0, 0) \n" \
             "then\n" \
             "a' = a \n" \
             "b' = b \n" \
             "c' = c"
    g = fs(string)
    assert g == geo.Transformation(
        fs("1 0 0 -1/2 \n"
           "0 1 0    0 \n"
           "0 0 1    0 \n"
           "0 0 0    1"))

    string1 = "O -> (1/2, 0, 0) \n" \
              "then\n" \
              "a' = a \n" \
              "b' = b \n" \
              "c' = c"

    string2 = "O -> (0,0,0) \n" \
              "then\n" \
              "a' = b\n" \
              "b' = a\n" \
              "c' = c"
    string = "O -> (1/2, 0, 0) \n" \
             "then\n"\
             "a' = b\n"\
             "b' = a\n"\
             "c' = c"

    g1 = fs(string1)
    g2 = fs(string2)
    g = fs(string)
    assert g == g2 * g1

    string = "O -> (1/2, 0, 0) \n" \
             "then\n" \
             "a' = a + b\n" \
             "b' = b\n" \
             "c' = c"
    print("--------")
    g = fs(string)
    print(g.value)
    assert g**fs("p 1/2 0 0") == fs("p 0 0 0")
    assert g**fs("p 1/2 1/3 0") == fs("p 0 1/3 0")
    assert g**fs("p 0 0 0") == fs("p -1/2 1/2 0")

    assert g * g.inv() == geo.Transformation(nb.Matrix.onematrix(4))

    string = "p0 0 0"
    p = fs(string)
    assert p == geo.Pos(fs("0 \n 0 \n 0 \n 1"))
    string = "P0 0 0"
    p = fs(string)
    assert p == geo.Pos(fs("0 \n 0 \n 0 \n 1"))
    string = "r0 0 0"
    p = fs(string)
    assert p == geo.Pos(fs("0 \n 0 \n 0 \n 1"))
    string = "R0 0 0"
    p = fs(string)
    assert p == geo.Pos(fs("0 \n 0 \n 0 \n 1"))
    string = p.__str__()
    assert string == "Pos /  0  \ \n" \
                     "   |   0   |\n" \
                     "    \  0  / "
    p1 = fs(string)
    assert p == p1
    string = "R1/2 1/2 1/2"
    p = fs(string)
    assert p == geo.Pos(fs("1/2 \n 1/2 \n 1/2 \n 1"))

    q = fs("k1 2 3")
    assert q == geo.Rec(fs("1 2 3 0"))
    q = fs("K 1 2 3")
    assert q == geo.Rec(fs("1 2 3 0"))
    q = fs("q 1/2 1/2 0")
    assert q == geo.Rec(fs("1/2 1/2 0 0"))
    q = fs("Q0 0 0")
    assert q == geo.Rec(fs("0 0 0 0"))
    q = fs("Rec <  1  2  3  > ")
    assert q == geo.Rec(fs("1 2 3 0"))
예제 #12
0
            return Dif(
                nb.Matrix([[right * self.x()], [right * self.y()],
                           [right * self.z()], [0]]))
        else:
            return NotImplemented

    def to_Symmetry(self):
        # Returns the symmetry operation that is a translation with
        # the Dif-Vector.
        return Symmetry(
            nb.Matrix([[1, 0, 0, self.x()], [0, 1, 0, self.y()],
                       [0, 0, 1, self.z()], [0, 0, 0, 1]]))


canonical_e0 = Dif(
    nb.Matrix([nb.Row([1]), nb.Row([0]),
               nb.Row([0]), nb.Row([0])]))

canonical_e1 = Dif(
    nb.Matrix([nb.Row([0]), nb.Row([1]),
               nb.Row([0]), nb.Row([0])]))

canonical_e2 = Dif(
    nb.Matrix([nb.Row([0]), nb.Row([0]),
               nb.Row([1]), nb.Row([0])]))


# **** class Rec ****
# An object of this class represents a vector in 3D reciprocal space.
# It is constructed via a 1x4-numbers.Matrix, wherein the last
# entry must be a 0.