예제 #1
0
def abspath(root, relpath):
    from pathlib import Path
    root = Path(root)
    if root.is_dir():
        path = root / relpath
    else:
        path = root.parent / relpath
    return str(path.absolute())
예제 #2
0
def export_imagej_rois(fname, polygons, set_position=True, subpixel=True, compression=ZIP_DEFLATED):
    """ polygons assumed to be a list of arrays with shape (id,2,c) """

    if isinstance(polygons,np.ndarray):
        polygons = (polygons,)

    fname = Path(fname)
    if fname.suffix == '.zip':
        fname = fname.with_suffix('')

    with ZipFile(str(fname)+'.zip', mode='w', compression=compression) as roizip:
        for pos,polygroup in enumerate(polygons,start=1):
            for i,poly in enumerate(polygroup,start=1):
                roi = polyroi_bytearray(poly[1],poly[0], pos=(pos if set_position else None), subpixel=subpixel)
                roizip.writestr('{pos:03d}_{i:03d}.roi'.format(pos=pos,i=i), roi)
예제 #3
0
    def __init__(self, config, name=None, basedir='.'):
        """See class docstring"""
        config is None or isinstance(config, DenoiSegConfig) or _raise(
            ValueError('Invalid configuration: %s' % str(config)))
        if config is not None and not config.is_valid():
            invalid_attr = config.is_valid(True)[1]
            raise ValueError('Invalid configuration attributes: ' +
                             ', '.join(invalid_attr))
        (not (config is None and basedir is None)) or _raise(ValueError())

        name is None or isinstance(name, string_types) or _raise(ValueError())
        basedir is None or isinstance(basedir, (string_types, Path)) or _raise(
            ValueError())
        self.config = config
        self.name = name if name is not None else datetime.datetime.now(
        ).strftime("%Y-%m-%d-%H-%M-%S.%f")
        self.basedir = Path(basedir) if basedir is not None else None

        if config is not None:
            # config was provided -> update before it is saved to disk
            self._update_and_check_config()
        self._set_logdir()
        if config is None:
            # config was loaded from disk -> update it after loading
            self._update_and_check_config()
        self._model_prepared = False
        self.keras_model = self._build()
        if config is None:
            self._find_and_load_weights()

        self.alpha = K.variable(value=1, dtype='float32')
예제 #4
0
파일: n2v_standard.py 프로젝트: juglab/n2v
    def __init__(self, config, name=None, basedir='.'):
        """See class docstring."""

        config is None or isinstance(config, self._config_class) or _raise(
            ValueError("Invalid configuration of type '%s', was expecting type '%s'." % (
                type(config).__name__, self._config_class.__name__))
        )
        if config is not None and not config.is_valid():
            invalid_attr = config.is_valid(True)[1]
            raise ValueError('Invalid configuration attributes: ' + ', '.join(invalid_attr))
        (not (config is None and basedir is None)) or _raise(
            ValueError("No config provided and cannot be loaded from disk since basedir=None."))

        name is None or (isinstance(name, string_types) and len(name) > 0) or _raise(
            ValueError("No valid name: '%s'" % str(name)))
        basedir is None or isinstance(basedir, (string_types, Path)) or _raise(
            ValueError("No valid basedir: '%s'" % str(basedir)))
        self.config = config
        self.name = name if name is not None else datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S.%f")
        self.basedir = Path(basedir) if basedir is not None else None
        if config is not None:
            # config was provided -> update before it is saved to disk
            self._update_and_check_config()
        self._set_logdir()
        if config is None:
            # config was loaded from disk -> update it after loading
            self._update_and_check_config()
        self._model_prepared = False
        self.keras_model = self._build()
        if config is None:
            self._find_and_load_weights()
예제 #5
0
def export_imagej_rois(fname,
                       polygons,
                       set_position=True,
                       compression=ZIP_DEFLATED):
    """ polygons assumed to be a list/array of arrays with shape (id,x,y) """

    fname = Path(fname)
    if fname.suffix == '.zip':
        fname = Path(fname.stem)

    with ZipFile(str(fname) + '.zip', mode='w',
                 compression=compression) as roizip:
        for pos, polygroup in enumerate(polygons, start=1):
            for i, poly in enumerate(polygroup, start=1):
                roi = polyroi_bytearray(poly[1],
                                        poly[0],
                                        pos=(pos if set_position else None))
                roizip.writestr('{pos:03d}_{i:03d}.roi'.format(pos=pos, i=i),
                                roi)
예제 #6
0
    def __init__(self, config, name=None, basedir='.'):
        """See class docstring"""
        config is None or isinstance(config, N2VConfig) or _raise(ValueError('Invalid configuration: %s' % str(config)))
        if config is not None and not config.is_valid():
            invalid_attr = config.is_valid(True)[1]
            raise ValueError('Invalid configuration attributes: ' + ', '.join(invalid_attr))
        (not (config is None and basedir is None)) or _raise(ValueError())

        name is None or isinstance(name, string_types) or _raise(ValueError())
        basedir is None or isinstance(basedir, (string_types, Path)) or _raise(ValueError())
        self.config = config
        self.name = name if name is not None else datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S.%f")
        self.basedir = Path(basedir) if basedir is not None else None
        self._set_logdir()
        self._model_prepared = False
        self.keras_model = self._build()
        if config is None:
            self._find_and_load_weights()
        else:
            config.probabilistic = False
예제 #7
0
    def export_TF(self,
                  name,
                  description,
                  authors,
                  test_img,
                  axes,
                  patch_shape,
                  fname=None):
        """
        name: String
            Name of the model. 
        description: String
            A short description of the model e.g. on what data it was trained.
        authors: String
            Comma seperated list of author names.
        patch_shape: The shape of the patches used in model.train().
        """
        if fname is None:
            fname = self.logdir / 'export.bioimage.io.zip'
        else:
            fname = Path(fname)

        input_n_dims = len(test_img.shape)
        if 'C' in axes:
            input_n_dims -= 1
        assert input_n_dims == self.config.n_dim, 'Input and network dimensions do not match.'
        assert test_img.shape[axes.index('X')] == test_img.shape[axes.index(
            'Y')], 'X and Y dimensions are not of same length.'
        test_output = self.predict(test_img, axes)
        # Extract central slice of Z-Stack
        if 'Z' in axes:
            z_dim = axes.index('Z')
            if z_dim != 0:
                test_output = np.moveaxis(test_output, z_dim, 0)
            test_output = test_output[int(test_output.shape[0] / 2)]

        # CSBDeep Export
        meta = {
            'type': self.__class__.__name__,
            'version': package_version,
            'probabilistic': self.config.probabilistic,
            'axes': self.config.axes,
            'axes_div_by': self._axes_div_by(self.config.axes),
            'tile_overlap': self._axes_tile_overlap(self.config.axes)
        }
        export_SavedModel(self.keras_model, str(fname), meta=meta)
        # CSBDeep Export Done

        # Replace : with -
        name = name.replace(':', ' -')
        yml_dict = self.get_yml_dict(name,
                                     description,
                                     authors,
                                     test_img,
                                     axes,
                                     patch_shape=patch_shape)
        yml_file = self.logdir / 'model.yaml'
        '''default_flow_style must be set to TRUE in order for the output to display arrays as [x,y,z]'''
        yaml = YAML(typ='rt')
        yaml.default_flow_style = False
        with open(yml_file, 'w') as outfile:
            yaml.dump(yml_dict, outfile)

        input_file = self.logdir / 'testinput.tif'
        output_file = self.logdir / 'testoutput.tif'
        imsave(input_file, test_img)
        imsave(output_file, test_output)

        with ZipFile(fname, 'a') as myzip:
            myzip.write(yml_file, arcname=os.path.basename(yml_file))
            myzip.write(input_file, arcname=os.path.basename(input_file))
            myzip.write(output_file, arcname=os.path.basename(output_file))

        print("\nModel exported in BioImage ModelZoo format:\n%s" %
              str(fname.resolve()))
예제 #8
0
def main():
    if not ('__file__' in locals() or '__file__' in globals()):
        print('running interactively, exiting.')
        sys.exit(0)

    # parse arguments
    parser, args = parse_args()
    args_dict = vars(args)

    # exit and show help if no arguments provided at all
    if len(sys.argv) == 1:
        parser.print_help()
        sys.exit(0)

    # check for required arguments manually (because of argparse issue)
    required = ('--input-dir', '--input-axes', '--norm-pmin', '--norm-pmax',
                '--model-basedir', '--model-name', '--output-dir')
    for r in required:
        dest = r[2:].replace('-', '_')
        if args_dict[dest] is None:
            parser.print_usage(file=sys.stderr)
            print("%s: error: the following arguments are required: %s" %
                  (parser.prog, r),
                  file=sys.stderr)
            sys.exit(1)

    # show effective arguments (including defaults)
    if not args.quiet:
        print('Arguments')
        print('---------')
        pprint(args_dict)
        print()
        sys.stdout.flush()

    # logging function
    log = (lambda *a, **k: None) if args.quiet else tqdm.write

    # get list of input files and exit if there are none
    file_list = list(Path(args.input_dir).glob(args.input_pattern))
    if len(file_list) == 0:
        log("No files to process in '%s' with pattern '%s'." %
            (args.input_dir, args.input_pattern))
        sys.exit(0)

    # delay imports after checking to all required arguments are provided
    from tifffile import imread, imsave
    from csbdeep.utils.tf import keras_import
    K = keras_import('backend')
    from csbdeep.models import CARE
    from csbdeep.data import PercentileNormalizer
    sys.stdout.flush()
    sys.stderr.flush()

    # limit gpu memory
    if args.gpu_memory_limit is not None:
        from csbdeep.utils.tf import limit_gpu_memory
        limit_gpu_memory(args.gpu_memory_limit)

    # create CARE model and load weights, create normalizer
    K.clear_session()
    model = CARE(config=None, name=args.model_name, basedir=args.model_basedir)
    if args.model_weights is not None:
        print("Loading network weights from '%s'." % args.model_weights)
        model.load_weights(args.model_weights)
    normalizer = PercentileNormalizer(pmin=args.norm_pmin,
                                      pmax=args.norm_pmax,
                                      do_after=args.norm_undo)

    n_tiles = args.n_tiles
    if n_tiles is not None and len(n_tiles) == 1:
        n_tiles = n_tiles[0]

    processed = []

    # process all files
    for file_in in tqdm(file_list,
                        disable=args.quiet
                        or (n_tiles is not None and np.prod(n_tiles) > 1)):
        # construct output file name
        file_out = Path(args.output_dir) / args.output_name.format(
            file_path=str(file_in.relative_to(args.input_dir).parent),
            file_name=file_in.stem,
            file_ext=file_in.suffix,
            model_name=args.model_name,
            model_weights=Path(args.model_weights).stem
            if args.model_weights is not None else None)

        # checks
        (file_in.suffix.lower() in ('.tif', '.tiff')
         and file_out.suffix.lower() in ('.tif', '.tiff')) or _raise(
             ValueError('only tiff files supported.'))

        # load and predict restored image
        img = imread(str(file_in))
        restored = model.predict(img,
                                 axes=args.input_axes,
                                 normalizer=normalizer,
                                 n_tiles=n_tiles)

        # restored image could be multi-channel even if input image is not
        axes_out = axes_check_and_normalize(args.input_axes)
        if restored.ndim > img.ndim:
            assert restored.ndim == img.ndim + 1
            assert 'C' not in axes_out
            axes_out += 'C'

        # convert data type (if necessary)
        restored = restored.astype(np.dtype(args.output_dtype), copy=False)

        # save to disk
        if not args.dry_run:
            file_out.parent.mkdir(parents=True, exist_ok=True)
            if args.imagej_tiff:
                save_tiff_imagej_compatible(str(file_out), restored, axes_out)
            else:
                imsave(str(file_out), restored)

        processed.append((file_in, file_out))

    # print summary of processed files
    if not args.quiet:
        sys.stdout.flush()
        sys.stderr.flush()
        n_processed = len(processed)
        len_processed = len(str(n_processed))
        log('Finished processing %d %s' %
            (n_processed, 'files' if n_processed > 1 else 'file'))
        log('-' * (26 + len_processed if n_processed > 1 else 26))
        for i, (file_in, file_out) in enumerate(processed):
            len_file = max(len(str(file_in)), len(str(file_out)))
            log(('{:>%d}. in : {:>%d}' % (len_processed, len_file)).format(
                1 + i, str(file_in)))
            log(('{:>%d}  out: {:>%d}' % (len_processed, len_file)).format(
                '', str(file_out)))