filtering = True filter_length = 1000 hypers = (1e7, 1e7) #hypers = (1e2, 1e2) deltas = (None, 1e-8, 1e-8) algo = lo.hacg tol = 1e-5 maxiter = 30 #wavelet = 'haar' wavelet = None ext = ".fits" pre = "ngc6946_huber_" # to store results sol = [] # define same header for all maps tod, projection, header, obs = csh.load_data(filenames) # get the weight map weights = projection.transpose(tod.ones(tod.shape)) weights.writefits(os.path.join(output_path, pre + 'weights' + ext)) del tod, projection, obs # find a map for each compression and save it for comp in compressions: sol.append( csh.rls(filenames, compression=comp, hypers=hypers, header=header, factor=factor, algo=algo, deltas=deltas, wavelet=wavelet,
# define data set datadir = os.getenv('CSH_DATA') filenames = [datadir + '/1342185454_blue_PreparedFrames.fits[5954:67614]', datadir + '/1342185455_blue_PreparedFrames.fits[5954:67615]'] # no compression output_path = os.path.join(os.getenv('HOME'), 'data', 'csh', 'output',) # compression modes compressions = ["", "ca", "cs"] #compressions = ["ca"] # median filter length deglitch=True covariance=True filtering = True filter_length = 10000 hypers = (1e9, 1e9) ext = ".fits" pre = "ngc6946_rls_cov_" # to store results sol = [] # define same header for all maps tod, projection, header, obs = csh.load_data(filenames[0]) del tod, projection, obs # find a map for each compression and save it for comp in compressions: sol.append(csh.rls(filenames, compression=comp, hypers=hypers, header=header, deglitch=deglitch, covariance=covariance, filtering=filtering, filter_length=filter_length)) fname = os.path.join(output_path, pre + comp + ext) sol[-1].writefits(fname)
#compressions = [""] factor=8 # median filter length deglitch=True covariance=False filtering = False filter_length = 10000 #hypers = (1e9, 1e9) hypers = (1e0, 1e0) #hypers = (0., 0.) ext = ".fits" pre = "matrix" # to store results M = [] # define same header for all maps tod, projection, header, obs = csh.load_data(filenames) # get the weight map weights = projection.transpose(tod.ones(tod.shape)) #weights.writefits(os.path.join(output_path, pre + 'weights' + ext)) del tod, projection, obs # choose a small portion of the map (in the center) # center the new map n = 64 header['CRPIX1'] -= header['NAXIS1'] / 2 - n / 2 header['CRPIX2'] -= header['NAXIS2'] / 2 - n / 2 # correct for wrong centering #header['CRPIX1'] += 7 #header['CRPIX2'] += 7 # header['NAXIS1'] = n header['NAXIS2'] = n