예제 #1
0
파일: csi.py 프로젝트: ktpolanski/ip2
    def _predict_pset(self, pset, theta):
        i,j = pset

        X = self.X.loc[:,[j]+i].values
        Y = self.Y.loc[:,[j]].values

        return gp.rbf(X,Y,theta).predict(X)
예제 #2
0
파일: csi.py 프로젝트: ktpolanski/ip2
    def eval_gp(self, i, theta):
        "Evaluate a GP for parental set @i using a RBF"

        # extract the items for our given parental set
        pi,gi = self.pset[i]

        # pull out data for these items
        X = self.X.loc[:,[gi]+pi].values
        Y = self.Y.loc[:,[gi]].values

        # evaluate the GP
        return gp.rbf(X, Y, theta)
예제 #3
0
파일: h5reader.py 프로젝트: ktpolanski/ip2
    def __init__(self, res, pset, datasets=None):
        self.target = res.target
        self.hypers = res.hypers
        self.pset   = list(pset)
        self.ix     = [self.target]+self.pset
        self.iy     = [self.target]

        if datasets is None:
            datasets = (r.data for r in res.mod.reps)

        X = [] # parent array
        Y = [] # target array
        for d in datasets:
            X.append(d[self.ix,:-1])
            Y.append(d[self.iy,1:])
        X = np.hstack(X).T
        Y = np.hstack(Y).T
        self.gp = gp.rbf(X,Y,self.hypers)