예제 #1
0
    def __init__(self):
        print("Começo do treinamento")

        data = CSVReader()
        trainingX = data.getXTest()
        trainingY = data.getYTest()

        self.poly_features = PolynomialFeatures(degree=3)
        polyX = self.poly_features.fit_transform(trainingX)

        # fit final model
        self.model = LinearRegression()
        self.model = self.model.fit(polyX, trainingY)
        print("Final do Treinamento")
예제 #2
0
 def test_square_root(self):
     test_data = CSVReader('Unit_Test_Square_Root.csv').data
     for row in test_data:
         self.assertAlmostEqual(
             self.calculator.square_root(float(row['Value 1'])),
             float(row['Result']))
         self.assertAlmostEqual(self.calculator.result,
                                float(row['Result']))
예제 #3
0
 def test_multiplication(self):
     test_data = CSVReader('Unit_Test_Multiplication.csv').data
     for row in test_data:
         self.assertEqual(
             self.calculator.multiply(float(row['Value 1']),
                                      float(row['Value 2'])),
             float(row['Result']))
         self.assertEqual(self.calculator.result, float(row['Result']))
예제 #4
0
 def test_subtraction(self):
     test_data = CSVReader('Unit_Test_Subtraction.csv').data
     for row in test_data:
         self.assertEqual(
             self.calculator.subtract(float(row['Value 2']),
                                      float(row['Value 1'])),
             float(row['Result']))
         self.assertEqual(self.calculator.result, float(row['Result']))
예제 #5
0
 def test_division(self):
     test_data = CSVReader('Unit_Test_Division.csv').data
     for row in test_data:
         self.assertAlmostEqual(
             self.calculator.divide(float(row['Value 2']),
                                    float(row['Value 1'])),
             float(row['Result']))
         self.assertAlmostEqual(self.calculator.result,
                                float(row['Result']))
# graphing imports!
import matplotlib.pyplot as plt
import matplotlib.colors as colors

# clustering
from csvReader import CSVReader
from k_means import KMeans

inputFile = "microarraydata.csv"
k = 4


csvReader = CSVReader()
microarrayData = csvReader.read(inputFile)
print microarrayData

kmeans = KMeans(verbose=True)
finalClusters = kmeans.kmeans(microarrayData, k)

print "\nFinal set of gene clusters:"
for clusterIdx, cluster in enumerate(finalClusters):
    print "\tCluster %d: %s" % (clusterIdx + 1, ["gene" + str(idx + 1) for gene, idx in cluster])
print ""
# k-means clustering
from k_means import KMeans
# QT clustering
from QT import QT
# Hierarchical clustering
from hierarchical import Hierarchical

# Print lots of stuff
VERBOSE = False

# the input file
inputFile = "ALL-AML-TRANSPOSED.csv"
# the output file
outputFile = "results.txt"
# A CSV file reader
csvReader = CSVReader()

# get the microarray data from the csv file
microarrayData = csvReader.read(inputFile)
microarrayLabels = csvReader.getLabels(inputFile)
print ("File %s parsed succesfully!\n\tRows:\t\t%d\n\tColumns:\t%d" % (inputFile, len(microarrayData), len(microarrayData[0])))
print ("\nLabels: {%s}" % (', '.join(microarrayLabels)))

## k-means algorithm!
# set the k-value (max potential clusters)
k = 3
# holds a reference to a KMeans object 
kmeans = KMeans(verbose=VERBOSE)
# get the clusters determined by the algorithm
kMeansFinalClusters = kmeans.kmeans(microarrayData, k)