def input_csv_to_df(self, input_file, date_range): csv_converter = CSVConverter(self.parser, self.logger) # "TAO_T0N110W_D_ADCP.ascii" => "T0N110W" column_str = input_file.filename.split("_")[1] columns = self.columns(column_str) csv_converter.input_csv_to_df(input_file, date_range, columns, column_str) self.pandas_tools.concat_df(csv_converter.pandas_tools.df)
def input_csv_to_df(self, input_file, date_range, plot_output_path): csv_converter = CSVConverter(self.parser, self.logger) # "0_0.csv" => "0_0" column_str = input_file.filename.split(".")[0] columns = [ column_str + '_' + column for column in ['GHI', 'DNI', 'DHI'] ] csv_converter.input_csv_to_df(input_file, date_range, columns) df = csv_converter.pandas_tools.df.copy() ParserSolarAnywhere.plot(plot_output_path, input_file.filename, df) self.pandas_tools.concat_df(csv_converter.pandas_tools.df)
def input_csv_to_df(self, input_file, date_range): csv_converter = CSVConverter(self.parser, self.logger) # "TAO_T5N140W_D_SST_10min.ascii" => "T5N140W" column = input_file.filename.split("_")[1] csv_converter.input_csv_to_df(input_file, date_range, [column]) self.pandas_tools.concat_df(csv_converter.pandas_tools.df)