def test_checm_cleaner_average(example_event): telid = list(example_event.r0.tel)[0] data = example_event.r0.tel[telid].waveform nsamples = data.shape[2] ped = example_event.mc.tel[telid].pedestal data_ped = data - np.atleast_3d(ped / nsamples) data_ped = np.array([data_ped[0], data_ped[0]]) # Test LG functionality cleaner = CHECMWaveformCleanerAverage() cleaner.apply(data_ped)
def test_checm_cleaner_average(example_event): telid = 11 data = example_event.r0.tel[telid].waveform nsamples = data.shape[2] ped = example_event.mc.tel[telid].pedestal data_ped = data - np.atleast_3d(ped / nsamples) data_ped = np.array([data_ped[0], data_ped[0]]) # Test LG functionality cleaner = CHECMWaveformCleanerAverage() cleaned = cleaner.apply(data_ped) assert_almost_equal(data_ped[0, 0, 0], -2.8, 1) assert_almost_equal(cleaned[0, 0, 0], -6.4, 1)
def test_checm_cleaner_average(): telid = 11 event = get_test_event() data = event.r0.tel[telid].adc_samples nsamples = data.shape[2] ped = event.mc.tel[telid].pedestal data_ped = data - np.atleast_3d(ped/nsamples) data_ped = np.array([data_ped[0], data_ped[0]]) # Test LG functionality cleaner = CHECMWaveformCleanerAverage(None, None) cleaned = cleaner.apply(data_ped) assert_almost_equal(data_ped[0, 0, 0], -2.8, 1) assert_almost_equal(cleaned[0, 0, 0], -6.4, 1)
def test_checm_cleaner_average(test_event): telid = 11 event = deepcopy(test_event) # to avoid modifying the test event data = event.r0.tel[telid].adc_samples nsamples = data.shape[2] ped = event.mc.tel[telid].pedestal data_ped = data - np.atleast_3d(ped / nsamples) data_ped = np.array([data_ped[0], data_ped[0]]) # Test LG functionality cleaner = CHECMWaveformCleanerAverage() cleaned = cleaner.apply(data_ped) assert_almost_equal(data_ped[0, 0, 0], -2.8, 1) assert_almost_equal(cleaned[0, 0, 0], -6.4, 1)