def fit_origin_crosses(self): """calculates the origin of the gamma as the weighted average direction of the intersections of all great circles Returns ------- gamma : shape (3) numpy array direction of origin of the reconstructed shower as a 3D vector crossings : shape (n,3) list list of all the crossings of the `GreatCircle` list """ crossings = [] for perm in combinations(self.circles.values(), 2): n1, n2 = perm[0].norm, perm[1].norm # cross product automatically weighs in the angle between # the two vectors: narrower angles have less impact, # perpendicular vectors have the most crossing = np.cross(n1, n2) # two great circles cross each other twice (one would be # the origin, the other one the direction of the gamma) it # doesn't matter which we pick but it should at least be # consistent: make sure to always take the "upper" solution if crossing[2] < 0: crossing *= -1 crossings.append(crossing * perm[0].weight * perm[1].weight) result = linalg.normalise(np.sum(crossings, axis=0)) * u.dimless off_angles = [linalg.angle(result, cross) / u.rad for cross in crossings] err_est_dir = np.mean(off_angles) * u.rad # averaging over the solutions of all permutations return result, err_est_dir
def MEst(origin, circles, weights): '''calculates the M-Estimator: a modified χ² that becomes asymptotically linear for high values and is therefore less sensitive to outliers the test is performed to maximise the angles between the fit direction and the all the normal vectors of the great circles .. math:: M_{Est} = \sum_i{ 2*\sqrt{1 + \chi^2} - 2} .. note:: seemingly inferior to negative sum of sin(angle)... Parameters ----------- origin : length-3 array direction vector of the gamma's origin used as seed circles : GreatCircle array collection of great circles created from the camera images weights : array list of weights for each image/great circle Returns ------- MEstimator : float ''' sin_ang = np.array([ linalg.length(np.cross(origin, circ.norm)) for circ in circles.values() ]) return -2 * np.sum(weights * np.sqrt((1 + np.square(sin_ang))) - 2) return -np.sum(weights * np.square(sin_ang)) ang = np.array( [linalg.angle(origin, circ.norm) for circ in circles.values()]) return np.sum(weights * np.sqrt(2. + (ang - np.pi / 2.)**2))
def _MEst(self, origin, circles, weights): ''' calculates the M-Estimator: a modified chi2 that becomes asymptotically linear for high values and is therefore less sensitive to outliers the test is performed to maximise the angles between the fit direction and the all the normal vectors of the great circles Parameters: ----------- origin : length-3 array direction vector of the gamma's origin used as seed circles : GreatCircle array collection of great circles created from the camera images weights : array list of weights for each image/great circle Returns: -------- MEstimator : float Algorithm: ---------- M-Est = sum[ weight * sqrt( 2 * chi**2 ) ] Note: ----- seemingly inferior to negative sum of sin(angle)... ''' sin_ang = np.array([ linalg.length(np.cross(origin, circ.norm)) for circ in circles.values() ]) return np.sum(weights * np.sqrt(2. + (sin_ang - np.pi / 2.)**2)) ang = np.array( [linalg.angle(origin, circ.norm) for circ in circles.values()]) ang[ang > np.pi / 2.] = np.pi - ang[ang > np.pi / 2] return np.sum(weights * np.sqrt(2. + (ang - np.pi / 2.)**2))
def MEst(origin, circles, weights): '''calculates the M-Estimator: a modified χ² that becomes asymptotically linear for high values and is therefore less sensitive to outliers the test is performed to maximise the angles between the fit direction and the all the normal vectors of the great circles .. math:: M_{Est} = \sum_i{ 2*\sqrt{1 + \chi^2} - 2} .. note:: seemingly inferior to negative sum of sin(angle)... Parameters ----------- origin : length-3 array direction vector of the gamma's origin used as seed circles : GreatCircle array collection of great circles created from the camera images weights : array list of weights for each image/great circle Returns ------- MEstimator : float ''' sin_ang = np.array([linalg.length(np.cross(origin, circ.norm)) for circ in circles.values()]) return -2 * np.sum(weights * np.sqrt((1 + np.square(sin_ang))) - 2) return -np.sum(weights * np.square(sin_ang)) ang = np.array([linalg.angle(origin, circ.norm) for circ in circles.values()]) return np.sum(weights * np.sqrt(2. + (ang - np.pi / 2.) ** 2))
def _MEst(self, origin, circles, weights): ''' calculates the M-Estimator: a modified chi2 that becomes asymptotically linear for high values and is therefore less sensitive to outliers the test is performed to maximise the angles between the fit direction and the all the normal vectors of the great circles Parameters: ----------- origin : length-3 array direction vector of the gamma's origin used as seed circles : GreatCircle array collection of great circles created from the camera images weights : array list of weights for each image/great circle Returns: -------- MEstimator : float Algorithm: ---------- M-Est = sum[ weight * sqrt( 2 * chi**2 ) ] Note: ----- seemingly inferior to negative sum of sin(angle)... ''' sin_ang = np.array([linalg.length(np.cross(origin, circ.norm)) for circ in circles.values()]) return np.sum(weights*np.sqrt(2. + (sin_ang-np.pi/2.)**2)) ang = np.array([linalg.angle(origin, circ.norm) for circ in circles.values()]) ang[ang > np.pi/2.] = np.pi-ang[ang > np.pi/2] return np.sum(weights*np.sqrt(2. + (ang-np.pi/2.)**2))
def main(): # your favourite units here energy_unit = u.TeV angle_unit = u.deg dist_unit = u.m parser = make_argparser() parser.add_argument('-o', '--outfile', type=str, help="if given, write output file with reconstruction results") parser.add_argument('--plot_c', action='store_true', help="plot camera-wise displays") group = parser.add_mutually_exclusive_group() group.add_argument('--proton', action='store_true', help="do protons instead of gammas") group.add_argument('--electron', action='store_true', help="do electrons instead of gammas") args = parser.parse_args() if args.infile_list: filenamelist = [] for f in args.infile_list: filenamelist += glob("{}/{}".format(args.indir, f)) elif args.proton: filenamelist = glob("{}/proton/*gz".format(args.indir)) channel = "proton" elif args.electron: filenamelist = glob("{}/electron/*gz".format(args.indir)) channel = "electron" elif args.gamma: filenamelist = glob("{}/gamma/*gz".format(args.indir)) channel = "gamma" else: raise ValueError("don't know which input to use...") filenamelist.sort() if not filenamelist: print("no files found; check indir: {}".format(args.indir)) exit(-1) else: print("found {} files".format(len(filenamelist))) tel_phi = {} tel_theta = {} # keeping track of events and where they were rejected Eventcutflow = CutFlow("EventCutFlow") Imagecutflow = CutFlow("ImageCutFlow") # takes care of image cleaning cleaner = ImageCleaner(mode=args.mode, cutflow=Imagecutflow, wavelet_options=args.raw, skip_edge_events=args.skip_edge_events, island_cleaning=True) # the class that does the shower reconstruction shower_reco = HillasReconstructor() shower_max_estimator = ShowerMaxEstimator("paranal") preper = EventPreparer(cleaner=cleaner, hillas_parameters=hillas_parameters, shower_reco=shower_reco, event_cutflow=Eventcutflow, image_cutflow=Imagecutflow, # event/image cuts: allowed_cam_ids=[], # means: all min_ntel=3, min_charge=args.min_charge, min_pixel=3) # a signal handler to abort the event loop but still do the post-processing signal_handler = SignalHandler() signal.signal(signal.SIGINT, signal_handler) try: # this class defines the reconstruction parameters to keep track of class RecoEvent(tb.IsDescription): NTels_trigg = tb.Int16Col(dflt=1, pos=0) NTels_clean = tb.Int16Col(dflt=1, pos=1) EnMC = tb.Float32Col(dflt=1, pos=2) xi = tb.Float32Col(dflt=1, pos=3) DeltaR = tb.Float32Col(dflt=1, pos=4) ErrEstPos = tb.Float32Col(dflt=1, pos=5) ErrEstDir = tb.Float32Col(dflt=1, pos=6) h_max = tb.Float32Col(dflt=1, pos=7) reco_outfile = tb.open_file( args.outfile, mode="w", # if we don't want to write the event list to disk, need to add more arguments **({} if args.store else {"driver": "H5FD_CORE", "driver_core_backing_store": False})) reco_table = reco_outfile.create_table("/", "reco_event", RecoEvent) reco_event = reco_table.row except: reco_event = RecoEvent() print("no pytables installed?") # ## ####### ####### ######## # ## ## ## ## ## ## ## # ## ## ## ## ## ## ## # ## ## ## ## ## ######## # ## ## ## ## ## ## # ## ## ## ## ## ## # ######## ####### ####### ## cam_id_map = {} # define here which telescopes to loop over allowed_tels = None # allowed_tels = prod3b_tel_ids("L+F+D") for i, filename in enumerate(filenamelist[:args.last]): print("file: {i} filename = {filename}".format(i=i, filename=filename)) source = hessio_event_source(filename, allowed_tels=allowed_tels, max_events=args.max_events) # loop that cleans and parametrises the images and performs the reconstruction for (event, hillas_dict, n_tels, tot_signal, max_signal, pos_fit, dir_fit, h_max, err_est_pos, err_est_dir) in preper.prepare_event(source): shower = event.mc org_alt = u.Quantity(shower.alt).to(u.deg) org_az = u.Quantity(shower.az).to(u.deg) if org_az > 180 * u.deg: org_az -= 360 * u.deg org_the = alt_to_theta(org_alt) org_phi = az_to_phi(org_az) if org_phi > 180 * u.deg: org_phi -= 360 * u.deg if org_phi < -180 * u.deg: org_phi += 360 * u.deg shower_org = linalg.set_phi_theta(org_phi, org_the) shower_core = convert_astropy_array([shower.core_x, shower.core_y]) xi = linalg.angle(dir_fit, shower_org).to(angle_unit) diff = linalg.length(pos_fit[:2] - shower_core) # print some performance print() print("xi = {:4.3f}".format(xi)) print("pos = {:4.3f}".format(diff)) print("h_max reco: {:4.3f}".format(h_max.to(u.km))) print("err_est_dir: {:4.3f}".format(err_est_dir.to(angle_unit))) print("err_est_pos: {:4.3f}".format(err_est_pos)) try: # store the reconstruction data in the PyTable reco_event["NTels_trigg"] = n_tels["tot"] reco_event["NTels_clean"] = len(shower_reco.circles) reco_event["EnMC"] = event.mc.energy / energy_unit reco_event["xi"] = xi / angle_unit reco_event["DeltaR"] = diff / dist_unit reco_event["ErrEstPos"] = err_est_pos / dist_unit reco_event["ErrEstDir"] = err_est_dir / angle_unit reco_event["h_max"] = h_max / dist_unit reco_event.append() reco_table.flush() print() print("xi res (68-percentile) = {:4.3f} {}" .format(np.percentile(reco_table.cols.xi, 68), angle_unit)) print("core res (68-percentile) = {:4.3f} {}" .format(np.percentile(reco_table.cols.DeltaR, 68), dist_unit)) print("h_max (median) = {:4.3f} {}" .format(np.percentile(reco_table.cols.h_max, 50), dist_unit)) except NoPyTables: pass if args.plot_c: from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.gca(projection='3d') for c in shower_reco.circles.values(): points = [c.pos + t * c.a * u.km for t in np.linspace(0, 15, 3)] ax.plot(*np.array(points).T, linewidth=np.sqrt(c.weight) / 10) ax.scatter(*c.pos[:, None].value, s=np.sqrt(c.weight)) plt.xlabel("x") plt.ylabel("y") plt.pause(.1) # this plots # • the MC shower core # • the reconstructed shower core # • the used telescopes # • and the trace of the Hillas plane on the ground plt.figure() for tel_id, c in shower_reco.circles.items(): plt.scatter(c.pos[0], c.pos[1], s=np.sqrt(c.weight)) plt.gca().annotate(tel_id, (c.pos[0].value, c.pos[1].value)) plt.plot([c.pos[0].value-500*c.norm[1], c.pos[0].value+500*c.norm[1]], [c.pos[1].value+500*c.norm[0], c.pos[1].value-500*c.norm[0]], linewidth=np.sqrt(c.weight)/10) plt.scatter(*pos_fit[:2], c="black", marker="*", label="fitted") plt.scatter(*shower_core[:2], c="black", marker="P", label="MC") plt.legend() plt.xlabel("x") plt.ylabel("y") plt.xlim(-1400, 1400) plt.ylim(-1400, 1400) plt.show() if signal_handler.stop: break if signal_handler.stop: break print("\n" + "="*35 + "\n") print("xi res (68-percentile) = {:4.3f} {}" .format(np.percentile(reco_table.cols.xi, 68), angle_unit)) print("core res (68-percentile) = {:4.3f} {}" .format(np.percentile(reco_table.cols.DeltaR, 68), dist_unit)) print("h_max (median) = {:4.3f} {}" .format(np.percentile(reco_table.cols.h_max, 50), dist_unit)) # print the cutflows for telescopes and camera images print("\n\n") Eventcutflow("min2Tels trig") print() Imagecutflow(sort_column=1) # if we don't want to plot anything, we can exit now if not args.plot: return # ######## ## ####### ######## ###### # ## ## ## ## ## ## ## ## # ## ## ## ## ## ## ## # ######## ## ## ## ## ###### # ## ## ## ## ## ## # ## ## ## ## ## ## ## # ## ######## ####### ## ###### plt.figure() plt.hist(reco_table.cols.h_max, bins=np.linspace(000, 15000, 51, True)) plt.title(channel) plt.xlabel("h_max reco") plt.pause(.1) figure = plt.figure() xi_edges = np.linspace(0, 5, 20) plt.hist(reco_table.cols.xi, bins=xi_edges, log=True) plt.xlabel(r"$\xi$ / deg") if args.write: save_fig('{}/reco_xi_{}'.format(args.plots_dir, args.mode)) plt.pause(.1) plt.figure() plt.hist(reco_table.cols.ErrEstDir[:], bins=np.linspace(0, 20, 50)) plt.title(channel) plt.xlabel("beta") plt.pause(.1) plt.figure() plt.hist(np.log10(reco_table.cols.xi[:] / reco_table.cols.ErrEstDir[:]), bins=50) plt.title(channel) plt.xlabel("log_10(xi / beta)") plt.pause(.1) # convert the xi-list into a dict with the number of used telescopes as keys xi_vs_tel = {} for xi, ntel in zip(reco_table.cols.xi, reco_table.cols.NTels_clean): if ntel not in xi_vs_tel: xi_vs_tel[ntel] = [xi] else: xi_vs_tel[ntel].append(xi) print(args.mode) for ntel, xis in sorted(xi_vs_tel.items()): print("NTel: {} -- median xi: {}".format(ntel, np.median(xis))) # print("histogram:", np.histogram(xis, bins=xi_edges)) # create a list of energy bin-edges and -centres for violin plots Energy_edges = np.linspace(2, 8, 13) Energy_centres = (Energy_edges[1:]+Energy_edges[:-1])/2. # convert the xi-list in to an energy-binned dict with the bin centre as keys xi_vs_energy = {} for en, xi in zip(reco_table.cols.EnMC, reco_table.cols.xi): # get the bin number this event belongs into sbin = np.digitize(np.log10(en), Energy_edges)-1 # the central value of the bin is the key for the dictionary if Energy_centres[sbin] not in xi_vs_energy: xi_vs_energy[Energy_centres[sbin]] = [xi] else: xi_vs_energy[Energy_centres[sbin]] += [xi] # plotting the angular error as violin plots with binning in # number of telescopes and shower energy figure = plt.figure() plt.subplot(211) plt.violinplot([np.log10(a) for a in xi_vs_tel.values()], [a for a in xi_vs_tel.keys()], points=60, widths=.75, showextrema=False, showmedians=True) plt.xlabel("Number of Telescopes") plt.ylabel(r"log($\xi$ / deg)") plt.ylim(-3, 2) plt.grid() plt.subplot(212) plt.violinplot([np.log10(a) for a in xi_vs_energy.values()], [a for a in xi_vs_energy.keys()], points=60, widths=(Energy_edges[1] - Energy_edges[0]) / 1.5, showextrema=False, showmedians=True) plt.xlabel(r"log(Energy / GeV)") plt.ylabel(r"log($\xi$ / deg)") plt.ylim(-3, 2) plt.grid() plt.tight_layout() if args.write: save_fig('{}/reco_xi_vs_E_NTel_{}'.format(args.plots_dir, args.mode)) plt.pause(.1) # convert the diffs-list into a dict with the number of used telescopes as keys diff_vs_tel = {} for diff, ntel in zip(reco_table.cols.DeltaR, reco_table.cols.NTels_clean): if ntel not in diff_vs_tel: diff_vs_tel[ntel] = [diff] else: diff_vs_tel[ntel].append(diff) # convert the diffs-list in to an energy-binned dict with the bin centre as keys diff_vs_energy = {} for en, diff in zip(reco_table.cols.EnMC, reco_table.cols.DeltaR): # get the bin number this event belongs into sbin = np.digitize(np.log10(en), Energy_edges) - 1 # the central value of the bin is the key for the dictionary if Energy_centres[sbin] not in diff_vs_energy: diff_vs_energy[Energy_centres[sbin]] = [diff] else: diff_vs_energy[Energy_centres[sbin]] += [diff] # plotting the core position error as violin plots with binning in # number of telescopes an shower energy plt.figure() plt.subplot(211) plt.violinplot([np.log10(a) for a in diff_vs_tel.values()], [a for a in diff_vs_tel.keys()], points=60, widths=.75, showextrema=False, showmedians=True) plt.xlabel("Number of Telescopes") plt.ylabel(r"log($\Delta R$ / m)") plt.grid() plt.subplot(212) plt.violinplot([np.log10(a) for a in diff_vs_energy.values()], [a for a in diff_vs_energy.keys()], points=60, widths=(Energy_edges[1] - Energy_edges[0]) / 1.5, showextrema=False, showmedians=True) plt.xlabel(r"log(Energy / GeV)") plt.ylabel(r"log($\Delta R$ / m)") plt.grid() plt.tight_layout() if args.write: save_fig('{}/reco_dist_vs_E_NTel_{}'.format(args.plots_dir, args.mode)) plt.show()
def main(): # your favourite units here energy_unit = u.TeV angle_unit = u.deg dist_unit = u.m agree_threshold = .5 min_tel = 3 parser = make_argparser() parser.add_argument('--classifier', type=str, default=expandvars( "$CTA_SOFT/tino_cta/data/classifier_pickle/" "classifier_{mode}_{cam_id}_{classifier}.pkl")) parser.add_argument('--regressor', type=str, default=expandvars( "$CTA_SOFT/tino_cta/data/classifier_pickle/" "regressor_{mode}_{cam_id}_{regressor}.pkl")) parser.add_argument('-o', '--outfile', type=str, default="", help="location to write the classified events to.") parser.add_argument('--wave_dir', type=str, default=None, help="directory where to find mr_filter. " "if not set look in $PATH") parser.add_argument( '--wave_temp_dir', type=str, default='/dev/shm/', help="directory where mr_filter to store the temporary fits " "files") group = parser.add_mutually_exclusive_group() group.add_argument('--proton', action='store_true', help="do protons instead of gammas") group.add_argument('--electron', action='store_true', help="do electrons instead of gammas") args = parser.parse_args() if args.infile_list: filenamelist = [] for f in args.infile_list: filenamelist += glob("{}/{}".format(args.indir, f)) filenamelist.sort() elif args.proton: filenamelist = sorted(glob("{}/proton/*gz".format(args.indir))) elif args.electron: filenamelist = glob("{}/electron/*gz".format(args.indir)) channel = "electron" else: filenamelist = sorted(glob("{}/gamma/*gz".format(args.indir))) if not filenamelist: print("no files found; check indir: {}".format(args.indir)) exit(-1) # keeping track of events and where they were rejected Eventcutflow = CutFlow("EventCutFlow") Imagecutflow = CutFlow("ImageCutFlow") # takes care of image cleaning cleaner = ImageCleaner(mode=args.mode, cutflow=Imagecutflow, wavelet_options=args.raw, tmp_files_directory=args.wave_temp_dir, skip_edge_events=False, island_cleaning=True) # the class that does the shower reconstruction shower_reco = HillasReconstructor() preper = EventPreparer( cleaner=cleaner, hillas_parameters=hillas_parameters, shower_reco=shower_reco, event_cutflow=Eventcutflow, image_cutflow=Imagecutflow, # event/image cuts: allowed_cam_ids=[], min_ntel=2, min_charge=args.min_charge, min_pixel=3) # wrapper for the scikit-learn classifier classifier = EventClassifier.load(args.classifier.format( **{ "mode": args.mode, "wave_args": "mixed", "classifier": 'RandomForestClassifier', "cam_id": "{cam_id}" }), cam_id_list=args.cam_ids) # wrapper for the scikit-learn regressor regressor = EnergyRegressor.load(args.regressor.format( **{ "mode": args.mode, "wave_args": "mixed", "regressor": "RandomForestRegressor", "cam_id": "{cam_id}" }), cam_id_list=args.cam_ids) ClassifierFeatures = namedtuple( "ClassifierFeatures", ("impact_dist", "sum_signal_evt", "max_signal_cam", "sum_signal_cam", "N_LST", "N_MST", "N_SST", "width", "length", "skewness", "kurtosis", "h_max", "err_est_pos", "err_est_dir")) EnergyFeatures = namedtuple( "EnergyFeatures", ("impact_dist", "sum_signal_evt", "max_signal_cam", "sum_signal_cam", "N_LST", "N_MST", "N_SST", "width", "length", "skewness", "kurtosis", "h_max", "err_est_pos", "err_est_dir")) # catch ctr-c signal to exit current loop and still display results signal_handler = SignalHandler() signal.signal(signal.SIGINT, signal_handler) # this class defines the reconstruction parameters to keep track of class RecoEvent(tb.IsDescription): Run_ID = tb.Int16Col(dflt=-1, pos=0) Event_ID = tb.Int16Col(dflt=-1, pos=1) NTels_trig = tb.Int16Col(dflt=0, pos=0) NTels_reco = tb.Int16Col(dflt=0, pos=1) NTels_reco_lst = tb.Int16Col(dflt=0, pos=2) NTels_reco_mst = tb.Int16Col(dflt=0, pos=3) NTels_reco_sst = tb.Int16Col(dflt=0, pos=4) MC_Energy = tb.Float32Col(dflt=np.nan, pos=5) reco_Energy = tb.Float32Col(dflt=np.nan, pos=6) reco_phi = tb.Float32Col(dflt=np.nan, pos=7) reco_theta = tb.Float32Col(dflt=np.nan, pos=8) off_angle = tb.Float32Col(dflt=np.nan, pos=9) xi = tb.Float32Col(dflt=np.nan, pos=10) DeltaR = tb.Float32Col(dflt=np.nan, pos=11) ErrEstPos = tb.Float32Col(dflt=np.nan, pos=12) ErrEstDir = tb.Float32Col(dflt=np.nan, pos=13) gammaness = tb.Float32Col(dflt=np.nan, pos=14) success = tb.BoolCol(dflt=False, pos=15) channel = "gamma" if "gamma" in " ".join(filenamelist) else "proton" reco_outfile = tb.open_file( mode="w", # if no outfile name is given (i.e. don't to write the event list to disk), # need specify two "driver" arguments **({ "filename": args.outfile } if args.outfile else { "filename": "no_outfile.h5", "driver": "H5FD_CORE", "driver_core_backing_store": False })) reco_table = reco_outfile.create_table("/", "reco_events", RecoEvent) reco_event = reco_table.row allowed_tels = None # all telescopes allowed_tels = prod3b_tel_ids("L+N+D") for i, filename in enumerate(filenamelist[:args.last]): # print(f"file: {i} filename = {filename}") source = hessio_event_source(filename, allowed_tels=allowed_tels, max_events=args.max_events) # loop that cleans and parametrises the images and performs the reconstruction for (event, hillas_dict, n_tels, tot_signal, max_signals, pos_fit, dir_fit, h_max, err_est_pos, err_est_dir) in preper.prepare_event(source, True): # now prepare the features for the classifier cls_features_evt = {} reg_features_evt = {} if hillas_dict is not None: for tel_id in hillas_dict.keys(): Imagecutflow.count("pre-features") tel_pos = np.array(event.inst.tel_pos[tel_id][:2]) * u.m moments = hillas_dict[tel_id] impact_dist = linalg.length(tel_pos - pos_fit) cls_features_tel = ClassifierFeatures( impact_dist=impact_dist / u.m, sum_signal_evt=tot_signal, max_signal_cam=max_signals[tel_id], sum_signal_cam=moments.size, N_LST=n_tels["LST"], N_MST=n_tels["MST"], N_SST=n_tels["SST"], width=moments.width / u.m, length=moments.length / u.m, skewness=moments.skewness, kurtosis=moments.kurtosis, h_max=h_max / u.m, err_est_pos=err_est_pos / u.m, err_est_dir=err_est_dir / u.deg) reg_features_tel = EnergyFeatures( impact_dist=impact_dist / u.m, sum_signal_evt=tot_signal, max_signal_cam=max_signals[tel_id], sum_signal_cam=moments.size, N_LST=n_tels["LST"], N_MST=n_tels["MST"], N_SST=n_tels["SST"], width=moments.width / u.m, length=moments.length / u.m, skewness=moments.skewness, kurtosis=moments.kurtosis, h_max=h_max / u.m, err_est_pos=err_est_pos / u.m, err_est_dir=err_est_dir / u.deg) if np.isnan(cls_features_tel).any() or np.isnan( reg_features_tel).any(): continue Imagecutflow.count("features nan") cam_id = event.inst.subarray.tel[tel_id].camera.cam_id try: reg_features_evt[cam_id] += [reg_features_tel] cls_features_evt[cam_id] += [cls_features_tel] except KeyError: reg_features_evt[cam_id] = [reg_features_tel] cls_features_evt[cam_id] = [cls_features_tel] if cls_features_evt and reg_features_evt: predict_energ = regressor.predict_by_event([reg_features_evt ])["mean"][0] predict_proba = classifier.predict_proba_by_event( [cls_features_evt]) gammaness = predict_proba[0, 0] try: # the MC direction of origin of the simulated particle shower = event.mc shower_core = np.array( [shower.core_x / u.m, shower.core_y / u.m]) * u.m shower_org = linalg.set_phi_theta(az_to_phi(shower.az), alt_to_theta(shower.alt)) # and how the reconstructed direction compares to that xi = linalg.angle(dir_fit, shower_org) DeltaR = linalg.length(pos_fit[:2] - shower_core) except Exception: # naked exception catch, because I'm not sure where # it would break in non-MC files xi = np.nan DeltaR = np.nan phi, theta = linalg.get_phi_theta(dir_fit) phi = (phi if phi > 0 else phi + 360 * u.deg) # TODO: replace with actual array pointing direction array_pointing = linalg.set_phi_theta(0 * u.deg, 20. * u.deg) # angular offset between the reconstructed direction and the array # pointing off_angle = linalg.angle(dir_fit, array_pointing) reco_event["NTels_trig"] = len(event.dl0.tels_with_data) reco_event["NTels_reco"] = len(hillas_dict) reco_event["NTels_reco_lst"] = n_tels["LST"] reco_event["NTels_reco_mst"] = n_tels["MST"] reco_event["NTels_reco_sst"] = n_tels["SST"] reco_event["reco_Energy"] = predict_energ.to(energy_unit).value reco_event["reco_phi"] = phi / angle_unit reco_event["reco_theta"] = theta / angle_unit reco_event["off_angle"] = off_angle / angle_unit reco_event["xi"] = xi / angle_unit reco_event["DeltaR"] = DeltaR / dist_unit reco_event["ErrEstPos"] = err_est_pos / dist_unit reco_event["ErrEstDir"] = err_est_dir / angle_unit reco_event["gammaness"] = gammaness reco_event["success"] = True else: reco_event["success"] = False # save basic event infos reco_event["MC_Energy"] = event.mc.energy.to(energy_unit).value reco_event["Event_ID"] = event.r1.event_id reco_event["Run_ID"] = event.r1.run_id reco_table.flush() reco_event.append() if signal_handler.stop: break if signal_handler.stop: break # make sure everything gets written out nicely reco_table.flush() try: print() Eventcutflow() print() Imagecutflow() # do some simple event selection # and print the corresponding selection efficiency N_selected = len([ x for x in reco_table.where( """(NTels_reco > min_tel) & (gammaness > agree_threshold)""") ]) N_total = len(reco_table) print("\nfraction selected events:") print("{} / {} = {} %".format(N_selected, N_total, N_selected / N_total * 100)) except ZeroDivisionError: pass print("\nlength filenamelist:", len(filenamelist[:args.last])) # do some plotting if so desired if args.plot: gammaness = [x['gammaness'] for x in reco_table] NTels_rec = [x['NTels_reco'] for x in reco_table] NTel_bins = np.arange(np.min(NTels_rec), np.max(NTels_rec) + 2) - .5 NTels_rec_lst = [x['NTels_reco_lst'] for x in reco_table] NTels_rec_mst = [x['NTels_reco_mst'] for x in reco_table] NTels_rec_sst = [x['NTels_reco_sst'] for x in reco_table] reco_energy = np.array([x['reco_Energy'] for x in reco_table]) mc_energy = np.array([x['MC_Energy'] for x in reco_table]) fig = plt.figure(figsize=(15, 5)) plt.suptitle(" ** ".join( [args.mode, "protons" if args.proton else "gamma"])) plt.subplots_adjust(left=0.05, right=0.97, hspace=0.39, wspace=0.2) ax = plt.subplot(131) histo = np.histogram2d(NTels_rec, gammaness, bins=(NTel_bins, np.linspace(0, 1, 11)))[0].T histo_normed = histo / histo.max(axis=0) im = ax.imshow( histo_normed, interpolation='none', origin='lower', aspect='auto', # extent=(*NTel_bins[[0, -1]], 0, 1), cmap=plt.cm.inferno) ax.set_xlabel("NTels") ax.set_ylabel("drifted gammaness") plt.title("Total Number of Telescopes") # next subplot ax = plt.subplot(132) histo = np.histogram2d(NTels_rec_sst, gammaness, bins=(NTel_bins, np.linspace(0, 1, 11)))[0].T histo_normed = histo / histo.max(axis=0) im = ax.imshow( histo_normed, interpolation='none', origin='lower', aspect='auto', # extent=(*NTel_bins[[0, -1]], 0, 1), cmap=plt.cm.inferno) ax.set_xlabel("NTels") plt.setp(ax.get_yticklabels(), visible=False) plt.title("Number of SSTs") # next subplot ax = plt.subplot(133) histo = np.histogram2d(NTels_rec_mst, gammaness, bins=(NTel_bins, np.linspace(0, 1, 11)))[0].T histo_normed = histo / histo.max(axis=0) im = ax.imshow( histo_normed, interpolation='none', origin='lower', aspect='auto', # extent=(*NTel_bins[[0, -1]], 0, 1), cmap=plt.cm.inferno) cb = fig.colorbar(im, ax=ax) ax.set_xlabel("NTels") plt.setp(ax.get_yticklabels(), visible=False) plt.title("Number of MSTs") plt.subplots_adjust(wspace=0.05) # plot the energy migration matrix plt.figure() plt.hist2d(np.log10(reco_energy), np.log10(mc_energy), bins=20, cmap=plt.cm.inferno) plt.xlabel("E_MC / TeV") plt.ylabel("E_rec / TeV") plt.colorbar() plt.show()
def main(): # your favourite units here energy_unit = u.TeV angle_unit = u.deg dist_unit = u.m parser = make_argparser() parser.add_argument( '-o', '--outfile', type=str, help="if given, write output file with reconstruction results") parser.add_argument('--plot_c', action='store_true', help="plot camera-wise displays") group = parser.add_mutually_exclusive_group() group.add_argument('--proton', action='store_true', help="do protons instead of gammas") group.add_argument('--electron', action='store_true', help="do electrons instead of gammas") args = parser.parse_args() if args.infile_list: filenamelist = [] for f in args.infile_list: filenamelist += glob("{}/{}".format(args.indir, f)) elif args.proton: filenamelist = glob("{}/proton/*gz".format(args.indir)) channel = "proton" elif args.electron: filenamelist = glob("{}/electron/*gz".format(args.indir)) channel = "electron" elif args.gamma: filenamelist = glob("{}/gamma/*gz".format(args.indir)) channel = "gamma" else: raise ValueError("don't know which input to use...") filenamelist.sort() if not filenamelist: print("no files found; check indir: {}".format(args.indir)) exit(-1) else: print("found {} files".format(len(filenamelist))) tel_phi = {} tel_theta = {} # keeping track of events and where they were rejected Eventcutflow = CutFlow("EventCutFlow") Imagecutflow = CutFlow("ImageCutFlow") # takes care of image cleaning cleaner = ImageCleaner(mode=args.mode, cutflow=Imagecutflow, wavelet_options=args.raw, skip_edge_events=args.skip_edge_events, island_cleaning=True) # the class that does the shower reconstruction shower_reco = HillasReconstructor() shower_max_estimator = ShowerMaxEstimator("paranal") preper = EventPreparer( cleaner=cleaner, hillas_parameters=hillas_parameters, shower_reco=shower_reco, event_cutflow=Eventcutflow, image_cutflow=Imagecutflow, # event/image cuts: allowed_cam_ids=[], # means: all min_ntel=3, min_charge=args.min_charge, min_pixel=3) # a signal handler to abort the event loop but still do the post-processing signal_handler = SignalHandler() signal.signal(signal.SIGINT, signal_handler) try: # this class defines the reconstruction parameters to keep track of class RecoEvent(tb.IsDescription): NTels_trigg = tb.Int16Col(dflt=1, pos=0) NTels_clean = tb.Int16Col(dflt=1, pos=1) EnMC = tb.Float32Col(dflt=1, pos=2) xi = tb.Float32Col(dflt=1, pos=3) DeltaR = tb.Float32Col(dflt=1, pos=4) ErrEstPos = tb.Float32Col(dflt=1, pos=5) ErrEstDir = tb.Float32Col(dflt=1, pos=6) h_max = tb.Float32Col(dflt=1, pos=7) reco_outfile = tb.open_file( args.outfile, mode="w", # if we don't want to write the event list to disk, need to add more arguments **({} if args.store else { "driver": "H5FD_CORE", "driver_core_backing_store": False })) reco_table = reco_outfile.create_table("/", "reco_event", RecoEvent) reco_event = reco_table.row except: reco_event = RecoEvent() print("no pytables installed?") # ## ####### ####### ######## # ## ## ## ## ## ## ## # ## ## ## ## ## ## ## # ## ## ## ## ## ######## # ## ## ## ## ## ## # ## ## ## ## ## ## # ######## ####### ####### ## cam_id_map = {} # define here which telescopes to loop over allowed_tels = None # allowed_tels = prod3b_tel_ids("L+F+D") for i, filename in enumerate(filenamelist[:args.last]): print("file: {i} filename = {filename}".format(i=i, filename=filename)) source = hessio_event_source(filename, allowed_tels=allowed_tels, max_events=args.max_events) # loop that cleans and parametrises the images and performs the reconstruction for (event, hillas_dict, n_tels, tot_signal, max_signal, pos_fit, dir_fit, h_max, err_est_pos, err_est_dir) in preper.prepare_event(source): shower = event.mc org_alt = u.Quantity(shower.alt).to(u.deg) org_az = u.Quantity(shower.az).to(u.deg) if org_az > 180 * u.deg: org_az -= 360 * u.deg org_the = alt_to_theta(org_alt) org_phi = az_to_phi(org_az) if org_phi > 180 * u.deg: org_phi -= 360 * u.deg if org_phi < -180 * u.deg: org_phi += 360 * u.deg shower_org = linalg.set_phi_theta(org_phi, org_the) shower_core = convert_astropy_array([shower.core_x, shower.core_y]) xi = linalg.angle(dir_fit, shower_org).to(angle_unit) diff = linalg.length(pos_fit[:2] - shower_core) # print some performance print() print("xi = {:4.3f}".format(xi)) print("pos = {:4.3f}".format(diff)) print("h_max reco: {:4.3f}".format(h_max.to(u.km))) print("err_est_dir: {:4.3f}".format(err_est_dir.to(angle_unit))) print("err_est_pos: {:4.3f}".format(err_est_pos)) try: # store the reconstruction data in the PyTable reco_event["NTels_trigg"] = n_tels["tot"] reco_event["NTels_clean"] = len(shower_reco.circles) reco_event["EnMC"] = event.mc.energy / energy_unit reco_event["xi"] = xi / angle_unit reco_event["DeltaR"] = diff / dist_unit reco_event["ErrEstPos"] = err_est_pos / dist_unit reco_event["ErrEstDir"] = err_est_dir / angle_unit reco_event["h_max"] = h_max / dist_unit reco_event.append() reco_table.flush() print() print("xi res (68-percentile) = {:4.3f} {}".format( np.percentile(reco_table.cols.xi, 68), angle_unit)) print("core res (68-percentile) = {:4.3f} {}".format( np.percentile(reco_table.cols.DeltaR, 68), dist_unit)) print("h_max (median) = {:4.3f} {}".format( np.percentile(reco_table.cols.h_max, 50), dist_unit)) except NoPyTables: pass if args.plot_c: from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.gca(projection='3d') for c in shower_reco.circles.values(): points = [ c.pos + t * c.a * u.km for t in np.linspace(0, 15, 3) ] ax.plot(*np.array(points).T, linewidth=np.sqrt(c.weight) / 10) ax.scatter(*c.pos[:, None].value, s=np.sqrt(c.weight)) plt.xlabel("x") plt.ylabel("y") plt.pause(.1) # this plots # • the MC shower core # • the reconstructed shower core # • the used telescopes # • and the trace of the Hillas plane on the ground plt.figure() for tel_id, c in shower_reco.circles.items(): plt.scatter(c.pos[0], c.pos[1], s=np.sqrt(c.weight)) plt.gca().annotate(tel_id, (c.pos[0].value, c.pos[1].value)) plt.plot([ c.pos[0].value - 500 * c.norm[1], c.pos[0].value + 500 * c.norm[1] ], [ c.pos[1].value + 500 * c.norm[0], c.pos[1].value - 500 * c.norm[0] ], linewidth=np.sqrt(c.weight) / 10) plt.scatter(*pos_fit[:2], c="black", marker="*", label="fitted") plt.scatter(*shower_core[:2], c="black", marker="P", label="MC") plt.legend() plt.xlabel("x") plt.ylabel("y") plt.xlim(-1400, 1400) plt.ylim(-1400, 1400) plt.show() if signal_handler.stop: break if signal_handler.stop: break print("\n" + "=" * 35 + "\n") print("xi res (68-percentile) = {:4.3f} {}".format( np.percentile(reco_table.cols.xi, 68), angle_unit)) print("core res (68-percentile) = {:4.3f} {}".format( np.percentile(reco_table.cols.DeltaR, 68), dist_unit)) print("h_max (median) = {:4.3f} {}".format( np.percentile(reco_table.cols.h_max, 50), dist_unit)) # print the cutflows for telescopes and camera images print("\n\n") Eventcutflow("min2Tels trig") print() Imagecutflow(sort_column=1) # if we don't want to plot anything, we can exit now if not args.plot: return # ######## ## ####### ######## ###### # ## ## ## ## ## ## ## ## # ## ## ## ## ## ## ## # ######## ## ## ## ## ###### # ## ## ## ## ## ## # ## ## ## ## ## ## ## # ## ######## ####### ## ###### plt.figure() plt.hist(reco_table.cols.h_max, bins=np.linspace(000, 15000, 51, True)) plt.title(channel) plt.xlabel("h_max reco") plt.pause(.1) figure = plt.figure() xi_edges = np.linspace(0, 5, 20) plt.hist(reco_table.cols.xi, bins=xi_edges, log=True) plt.xlabel(r"$\xi$ / deg") if args.write: save_fig('{}/reco_xi_{}'.format(args.plots_dir, args.mode)) plt.pause(.1) plt.figure() plt.hist(reco_table.cols.ErrEstDir[:], bins=np.linspace(0, 20, 50)) plt.title(channel) plt.xlabel("beta") plt.pause(.1) plt.figure() plt.hist(np.log10(reco_table.cols.xi[:] / reco_table.cols.ErrEstDir[:]), bins=50) plt.title(channel) plt.xlabel("log_10(xi / beta)") plt.pause(.1) # convert the xi-list into a dict with the number of used telescopes as keys xi_vs_tel = {} for xi, ntel in zip(reco_table.cols.xi, reco_table.cols.NTels_clean): if ntel not in xi_vs_tel: xi_vs_tel[ntel] = [xi] else: xi_vs_tel[ntel].append(xi) print(args.mode) for ntel, xis in sorted(xi_vs_tel.items()): print("NTel: {} -- median xi: {}".format(ntel, np.median(xis))) # print("histogram:", np.histogram(xis, bins=xi_edges)) # create a list of energy bin-edges and -centres for violin plots Energy_edges = np.linspace(2, 8, 13) Energy_centres = (Energy_edges[1:] + Energy_edges[:-1]) / 2. # convert the xi-list in to an energy-binned dict with the bin centre as keys xi_vs_energy = {} for en, xi in zip(reco_table.cols.EnMC, reco_table.cols.xi): # get the bin number this event belongs into sbin = np.digitize(np.log10(en), Energy_edges) - 1 # the central value of the bin is the key for the dictionary if Energy_centres[sbin] not in xi_vs_energy: xi_vs_energy[Energy_centres[sbin]] = [xi] else: xi_vs_energy[Energy_centres[sbin]] += [xi] # plotting the angular error as violin plots with binning in # number of telescopes and shower energy figure = plt.figure() plt.subplot(211) plt.violinplot([np.log10(a) for a in xi_vs_tel.values()], [a for a in xi_vs_tel.keys()], points=60, widths=.75, showextrema=False, showmedians=True) plt.xlabel("Number of Telescopes") plt.ylabel(r"log($\xi$ / deg)") plt.ylim(-3, 2) plt.grid() plt.subplot(212) plt.violinplot([np.log10(a) for a in xi_vs_energy.values()], [a for a in xi_vs_energy.keys()], points=60, widths=(Energy_edges[1] - Energy_edges[0]) / 1.5, showextrema=False, showmedians=True) plt.xlabel(r"log(Energy / GeV)") plt.ylabel(r"log($\xi$ / deg)") plt.ylim(-3, 2) plt.grid() plt.tight_layout() if args.write: save_fig('{}/reco_xi_vs_E_NTel_{}'.format(args.plots_dir, args.mode)) plt.pause(.1) # convert the diffs-list into a dict with the number of used telescopes as keys diff_vs_tel = {} for diff, ntel in zip(reco_table.cols.DeltaR, reco_table.cols.NTels_clean): if ntel not in diff_vs_tel: diff_vs_tel[ntel] = [diff] else: diff_vs_tel[ntel].append(diff) # convert the diffs-list in to an energy-binned dict with the bin centre as keys diff_vs_energy = {} for en, diff in zip(reco_table.cols.EnMC, reco_table.cols.DeltaR): # get the bin number this event belongs into sbin = np.digitize(np.log10(en), Energy_edges) - 1 # the central value of the bin is the key for the dictionary if Energy_centres[sbin] not in diff_vs_energy: diff_vs_energy[Energy_centres[sbin]] = [diff] else: diff_vs_energy[Energy_centres[sbin]] += [diff] # plotting the core position error as violin plots with binning in # number of telescopes an shower energy plt.figure() plt.subplot(211) plt.violinplot([np.log10(a) for a in diff_vs_tel.values()], [a for a in diff_vs_tel.keys()], points=60, widths=.75, showextrema=False, showmedians=True) plt.xlabel("Number of Telescopes") plt.ylabel(r"log($\Delta R$ / m)") plt.grid() plt.subplot(212) plt.violinplot([np.log10(a) for a in diff_vs_energy.values()], [a for a in diff_vs_energy.keys()], points=60, widths=(Energy_edges[1] - Energy_edges[0]) / 1.5, showextrema=False, showmedians=True) plt.xlabel(r"log(Energy / GeV)") plt.ylabel(r"log($\Delta R$ / m)") plt.grid() plt.tight_layout() if args.write: save_fig('{}/reco_dist_vs_E_NTel_{}'.format(args.plots_dir, args.mode)) plt.show()
continue reco.get_great_circles(hillas_params, event.inst.subarray, point_azimuth, point_altitude) # fit the gamma's direction of origin # return reconstructed direction (3 components) with errors on the values reco_direction, reco_dir_err = reco.fit_origin_crosses() # In case fit fails to get any real value if np.isnan(reco_direction).any(): continue # get angular offset between reconstructed shower direction and MC # generated shower direction off_angle = linalg.angle(reco_direction, shower_direction) # Appending all estimated off angles off_angles.append(off_angle.to(u.deg).value) # calculate theta square thetasq = [] for i in off_angles: thetasq.append(i**2) # To plot thetasquare # The number of events in th data files for LSTCam is not significantly high to give a nice # thetasquare plot for gammas # One can use deedicated MC file for LST get nice plot plt.figure(figsize=(10, 8)) plt.hist(thetasq, bins=np.linspace(0, 10, 50))
sum_w = np.sum(pmt_signal_w) sum_t = np.sum(pmt_signal_t) Epsilon_intensity_w = abs(sum_w - sum_p) / sum_p Epsilon_intensity_t = abs(sum_t - sum_p) / sum_p alpha = {} length = {} width = {} for k, h in hillas.items(): fit.get_great_circles({tel_id: h}, event.inst.subarray, tel_phi, tel_theta) c = fit.circles[tel_id] alpha[k] = abs((angle(c.norm, shower_org) * u.rad) - 90 * u.deg).to(u.deg) length[k] = h.length width[k] = h.width for k, signal in { # 'p': pmt_signal_p, 'w': pmt_signal_w }.items(): h = hillas[k] p1_x = h.cen_x p1_y = h.cen_y p2_x = p1_x + h.length * np.cos(h.psi) p2_y = p1_y + h.length * np.sin(h.psi)
def main(): # your favourite units here energy_unit = u.TeV angle_unit = u.deg dist_unit = u.m agree_threshold = .5 min_tel = 3 parser = make_argparser() parser.add_argument('--classifier', type=str, default='data/classifier_pickle/classifier' '_{mode}_{cam_id}_{classifier}.pkl') parser.add_argument('--regressor', type=str, default='data/classifier_pickle/regressor' '_{mode}_{cam_id}_{regressor}.pkl') parser.add_argument('-o', '--outfile', type=str, default="", help="location to write the classified events to.") parser.add_argument('--wave_dir', type=str, default=None, help="directory where to find mr_filter. " "if not set look in $PATH") parser.add_argument('--wave_temp_dir', type=str, default='/tmp/', help="directory " "where mr_filter to store the temporary fits files") group = parser.add_mutually_exclusive_group() group.add_argument('--proton', action='store_true', help="do protons instead of gammas") group.add_argument('--electron', action='store_true', help="do electrons instead of gammas") args = parser.parse_args() if args.infile_list: filenamelist = [] for f in args.infile_list: filenamelist += glob("{}/{}".format(args.indir, f)) filenamelist.sort() elif args.proton: filenamelist = sorted(glob("{}/proton/*gz".format(args.indir))) elif args.electron: filenamelist = glob("{}/electron/*gz".format(args.indir)) channel = "electron" else: filenamelist = sorted(glob("{}/gamma/*gz".format(args.indir))) if not filenamelist: print("no files found; check indir: {}".format(args.indir)) exit(-1) # keeping track of events and where they were rejected Eventcutflow = CutFlow("EventCutFlow") Imagecutflow = CutFlow("ImageCutFlow") # takes care of image cleaning cleaner = ImageCleaner(mode=args.mode, cutflow=Imagecutflow, wavelet_options=args.raw, skip_edge_events=False, island_cleaning=True) # the class that does the shower reconstruction shower_reco = HillasReconstructor() preper = EventPreparer( cleaner=cleaner, hillas_parameters=hillas_parameters, shower_reco=shower_reco, event_cutflow=Eventcutflow, image_cutflow=Imagecutflow, # event/image cuts: allowed_cam_ids=[], min_ntel=2, min_charge=args.min_charge, min_pixel=3) # wrapper for the scikit-learn classifier classifier = EventClassifier.load( args.classifier.format(**{ "mode": args.mode, "wave_args": "mixed", "classifier": 'RandomForestClassifier', "cam_id": "{cam_id}"}), cam_id_list=args.cam_ids) # wrapper for the scikit-learn regressor regressor = EnergyRegressor.load( args.regressor.format(**{ "mode": args.mode, "wave_args": "mixed", "regressor": "RandomForestRegressor", "cam_id": "{cam_id}"}), cam_id_list=args.cam_ids) ClassifierFeatures = namedtuple( "ClassifierFeatures", ( "impact_dist", "sum_signal_evt", "max_signal_cam", "sum_signal_cam", "N_LST", "N_MST", "N_SST", "width", "length", "skewness", "kurtosis", "h_max", "err_est_pos", "err_est_dir")) EnergyFeatures = namedtuple( "EnergyFeatures", ( "impact_dist", "sum_signal_evt", "max_signal_cam", "sum_signal_cam", "N_LST", "N_MST", "N_SST", "width", "length", "skewness", "kurtosis", "h_max", "err_est_pos", "err_est_dir")) # catch ctr-c signal to exit current loop and still display results signal_handler = SignalHandler() signal.signal(signal.SIGINT, signal_handler) # this class defines the reconstruction parameters to keep track of class RecoEvent(tb.IsDescription): Run_ID = tb.Int16Col(dflt=-1, pos=0) Event_ID = tb.Int16Col(dflt=-1, pos=1) NTels_trig = tb.Int16Col(dflt=0, pos=0) NTels_reco = tb.Int16Col(dflt=0, pos=1) NTels_reco_lst = tb.Int16Col(dflt=0, pos=2) NTels_reco_mst = tb.Int16Col(dflt=0, pos=3) NTels_reco_sst = tb.Int16Col(dflt=0, pos=4) MC_Energy = tb.Float32Col(dflt=np.nan, pos=5) reco_Energy = tb.Float32Col(dflt=np.nan, pos=6) reco_phi = tb.Float32Col(dflt=np.nan, pos=7) reco_theta = tb.Float32Col(dflt=np.nan, pos=8) off_angle = tb.Float32Col(dflt=np.nan, pos=9) xi = tb.Float32Col(dflt=np.nan, pos=10) DeltaR = tb.Float32Col(dflt=np.nan, pos=11) ErrEstPos = tb.Float32Col(dflt=np.nan, pos=12) ErrEstDir = tb.Float32Col(dflt=np.nan, pos=13) gammaness = tb.Float32Col(dflt=np.nan, pos=14) channel = "gamma" if "gamma" in " ".join(filenamelist) else "proton" reco_outfile = tb.open_file( mode="w", # if no outfile name is given (i.e. don't to write the event list to disk), # need specify two "driver" arguments **({"filename": args.outfile} if args.outfile else {"filename": "no_outfile.h5", "driver": "H5FD_CORE", "driver_core_backing_store": False})) reco_table = reco_outfile.create_table("/", "reco_events", RecoEvent) reco_event = reco_table.row allowed_tels = None # all telescopes allowed_tels = prod3b_tel_ids("L+N+D") for i, filename in enumerate(filenamelist[:args.last]): # print(f"file: {i} filename = {filename}") source = hessio_event_source(filename, allowed_tels=allowed_tels, max_events=args.max_events) # loop that cleans and parametrises the images and performs the reconstruction for (event, hillas_dict, n_tels, tot_signal, max_signals, pos_fit, dir_fit, h_max, err_est_pos, err_est_dir) in preper.prepare_event(source, True): # now prepare the features for the classifier cls_features_evt = {} reg_features_evt = {} if hillas_dict is not None: for tel_id in hillas_dict.keys(): Imagecutflow.count("pre-features") tel_pos = np.array(event.inst.tel_pos[tel_id][:2]) * u.m moments = hillas_dict[tel_id] impact_dist = linalg.length(tel_pos - pos_fit) cls_features_tel = ClassifierFeatures( impact_dist=impact_dist / u.m, sum_signal_evt=tot_signal, max_signal_cam=max_signals[tel_id], sum_signal_cam=moments.size, N_LST=n_tels["LST"], N_MST=n_tels["MST"], N_SST=n_tels["SST"], width=moments.width / u.m, length=moments.length / u.m, skewness=moments.skewness, kurtosis=moments.kurtosis, h_max=h_max / u.m, err_est_pos=err_est_pos / u.m, err_est_dir=err_est_dir / u.deg ) reg_features_tel = EnergyFeatures( impact_dist=impact_dist / u.m, sum_signal_evt=tot_signal, max_signal_cam=max_signals[tel_id], sum_signal_cam=moments.size, N_LST=n_tels["LST"], N_MST=n_tels["MST"], N_SST=n_tels["SST"], width=moments.width / u.m, length=moments.length / u.m, skewness=moments.skewness, kurtosis=moments.kurtosis, h_max=h_max / u.m, err_est_pos=err_est_pos / u.m, err_est_dir=err_est_dir / u.deg ) if np.isnan(cls_features_tel).any() or np.isnan(reg_features_tel).any(): continue Imagecutflow.count("features nan") cam_id = event.inst.subarray.tel[tel_id].camera.cam_id try: reg_features_evt[cam_id] += [reg_features_tel] cls_features_evt[cam_id] += [cls_features_tel] except KeyError: reg_features_evt[cam_id] = [reg_features_tel] cls_features_evt[cam_id] = [cls_features_tel] # save basic event infos reco_event["MC_Energy"] = event.mc.energy.to(energy_unit).value reco_event["Event_ID"] = event.r1.event_id reco_event["Run_ID"] = event.r1.run_id if cls_features_evt and reg_features_evt: predict_energ = regressor.predict_by_event([reg_features_evt])["mean"][0] predict_proba = classifier.predict_proba_by_event([cls_features_evt]) gammaness = predict_proba[0, 0] # the MC direction of origin of the simulated particle shower = event.mc shower_core = np.array([shower.core_x / u.m, shower.core_y / u.m]) * u.m shower_org = linalg.set_phi_theta(shower.az + 90 * u.deg, 90. * u.deg - shower.alt) # and how the reconstructed direction compares to that xi = linalg.angle(dir_fit, shower_org) phi, theta = linalg.get_phi_theta(dir_fit) phi = (phi if phi > 0 else phi + 360 * u.deg) DeltaR = linalg.length(pos_fit[:2] - shower_core) # TODO: replace with actual array pointing direction array_pointing = linalg.set_phi_theta(0 * u.deg, 20. * u.deg) # angular offset between the reconstructed direction and the array # pointing off_angle = linalg.angle(dir_fit, array_pointing) reco_event["NTels_trig"] = len(event.dl0.tels_with_data) reco_event["NTels_reco"] = len(hillas_dict) reco_event["NTels_reco_lst"] = n_tels["LST"] reco_event["NTels_reco_mst"] = n_tels["MST"] reco_event["NTels_reco_sst"] = n_tels["SST"] reco_event["reco_Energy"] = predict_energ.to(energy_unit).value reco_event["reco_phi"] = phi / angle_unit reco_event["reco_theta"] = theta / angle_unit reco_event["off_angle"] = off_angle / angle_unit reco_event["xi"] = xi / angle_unit reco_event["DeltaR"] = DeltaR / dist_unit reco_event["ErrEstPos"] = err_est_pos / dist_unit reco_event["ErrEstDir"] = err_est_dir / angle_unit reco_event["gammaness"] = gammaness reco_event.append() reco_table.flush() if signal_handler.stop: break if signal_handler.stop: break try: print() Eventcutflow() print() Imagecutflow() # do some simple event selection # and print the corresponding selection efficiency N_selected = len([x for x in reco_table.where( """(NTels_reco > min_tel) & (gammaness > agree_threshold)""")]) N_total = len(reco_table) print("\nfraction selected events:") print("{} / {} = {} %".format(N_selected, N_total, N_selected / N_total * 100)) except ZeroDivisionError: pass print("\nlength filenamelist:", len(filenamelist[:args.last])) # do some plotting if so desired if args.plot: gammaness = [x['gammaness'] for x in reco_table] NTels_rec = [x['NTels_reco'] for x in reco_table] NTel_bins = np.arange(np.min(NTels_rec), np.max(NTels_rec) + 2) - .5 NTels_rec_lst = [x['NTels_reco_lst'] for x in reco_table] NTels_rec_mst = [x['NTels_reco_mst'] for x in reco_table] NTels_rec_sst = [x['NTels_reco_sst'] for x in reco_table] reco_energy = np.array([x['reco_Energy'] for x in reco_table]) mc_energy = np.array([x['MC_Energy'] for x in reco_table]) fig = plt.figure(figsize=(15, 5)) plt.suptitle(" ** ".join([args.mode, "protons" if args.proton else "gamma"])) plt.subplots_adjust(left=0.05, right=0.97, hspace=0.39, wspace=0.2) ax = plt.subplot(131) histo = np.histogram2d(NTels_rec, gammaness, bins=(NTel_bins, np.linspace(0, 1, 11)))[0].T histo_normed = histo / histo.max(axis=0) im = ax.imshow(histo_normed, interpolation='none', origin='lower', aspect='auto', # extent=(*NTel_bins[[0, -1]], 0, 1), cmap=plt.cm.inferno) ax.set_xlabel("NTels") ax.set_ylabel("drifted gammaness") plt.title("Total Number of Telescopes") # next subplot ax = plt.subplot(132) histo = np.histogram2d(NTels_rec_sst, gammaness, bins=(NTel_bins, np.linspace(0, 1, 11)))[0].T histo_normed = histo / histo.max(axis=0) im = ax.imshow(histo_normed, interpolation='none', origin='lower', aspect='auto', # extent=(*NTel_bins[[0, -1]], 0, 1), cmap=plt.cm.inferno) ax.set_xlabel("NTels") plt.setp(ax.get_yticklabels(), visible=False) plt.title("Number of SSTs") # next subplot ax = plt.subplot(133) histo = np.histogram2d(NTels_rec_mst, gammaness, bins=(NTel_bins, np.linspace(0, 1, 11)))[0].T histo_normed = histo / histo.max(axis=0) im = ax.imshow(histo_normed, interpolation='none', origin='lower', aspect='auto', # extent=(*NTel_bins[[0, -1]], 0, 1), cmap=plt.cm.inferno) cb = fig.colorbar(im, ax=ax) ax.set_xlabel("NTels") plt.setp(ax.get_yticklabels(), visible=False) plt.title("Number of MSTs") plt.subplots_adjust(wspace=0.05) # plot the energy migration matrix plt.figure() plt.hist2d(np.log10(reco_energy), np.log10(mc_energy), bins=20, cmap=plt.cm.inferno) plt.xlabel("E_MC / TeV") plt.ylabel("E_rec / TeV") plt.colorbar() plt.show()