class OcrDetCTPN(): def __init__(self, model_path='./checkpoints/CTPN.pth'): self.model = CTPN_Model() self.use_gpu = torch.cuda.is_available() if self.use_gpu: self.model.cuda() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model.load_state_dict( torch.load(model_path, map_location=device)['model_state_dict']) for p in self.model.parameters(): p.requires_grad = False self.model.eval() self.prob_thresh = 0.5 def inference(self, image): image_sz = resize(image, height=ctpn_params.IMAGE_HEIGHT) # 宽高缩放比例(等比例缩放) rescale_fac = image.shape[0] / image_sz.shape[0] h, w = image_sz.shape[:2] # 减均值 image_sz = image_sz.astype(np.float32) - ctpn_params.IMAGE_MEAN image_sz = torch.from_numpy(image_sz.transpose( 2, 0, 1)).unsqueeze(0).float() if self.use_gpu: image_sz = image_sz.cuda() cls, regr = self.model(image_sz) cls_prob = F.softmax(cls, dim=-1).cpu().numpy() regr = regr.cpu().numpy() anchor = gen_anchor((int(h / 16), int(w / 16)), 16) bbox = bbox_transfor_inv(anchor, regr) bbox = clip_box(bbox, [h, w]) fg = np.where(cls_prob[0, :, 1] > self.prob_thresh)[0] select_anchor = bbox[fg, :] select_score = cls_prob[0, fg, 1] select_anchor = select_anchor.astype(np.int32) keep_index = filter_bbox(select_anchor, 16) # nms select_anchor = select_anchor[keep_index] select_score = select_score[keep_index] select_score = np.reshape(select_score, (select_score.shape[0], 1)) nmsbox = np.hstack((select_anchor, select_score)) keep = nms(nmsbox, 0.3) select_anchor = select_anchor[keep] select_score = select_score[keep] # text line- textConn = TextProposalConnectorOriented() text = textConn.get_text_lines(select_anchor, select_score, [h, w]) text = [np.hstack((res[:8] * rescale_fac, res[8])) for res in text] return text
from ctpn_utils import gen_anchor, bbox_transfor_inv, clip_box, filter_bbox,nms, TextProposalConnectorOriented from ctpn_utils import resize import config prob_thresh = 0.8 width = 600 #device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') device = torch.device('cpu') #weights = os.path.join(config.checkpoints_dir, 'trained weights file.pth.tar') weights = config.model_path model = CTPN_Model() model.load_state_dict(torch.load(weights, map_location=device)['model_state_dict']) model.to(device) model.eval() def dis(image): cv2.imshow('image', image) cv2.waitKey(0) cv2.destroyAllWindows() filenames = [os.path.join(config.img_path, file) for file in os.listdir(config.img_path)] print(filenames)
if os.path.exists(checkpoints_weight): pretrained = False # dataset = VOCDataset(args['image_dir'], args['labels_dir']) dataset = FakepagesDataset(args['image_dir'], args['labels_dir']) dataloader = DataLoader(dataset, batch_size=1, shuffle=True, num_workers=args['num_workers']) model = CTPN_Model() model.to(device) if os.path.exists(checkpoints_weight): print('using pretrained weight: {}'.format(checkpoints_weight)) cc = torch.load(checkpoints_weight, map_location=device) model.load_state_dict(cc['model_state_dict']) try: resume_epoch = cc['epoch'] except KeyError: resume_epoch = 0 params_to_uodate = model.parameters() optimizer = optim.SGD(params_to_uodate, lr=lr, momentum=0.9) critetion_cls = RPN_CLS_Loss(device) critetion_regr = RPN_REGR_Loss(device) best_loss_cls = 100 best_loss_regr = 100 best_loss = 100 best_model = None