def test_irregular_subplots(): df = cf.datagen.bubble(10, 50, mode='stocks') figs = cf.figures(df, [ dict(kind='histogram', keys='x', color='blue'), dict(kind='scatter', mode='markers', x='x', y='y', size=5), dict( kind='scatter', mode='markers', x='x', y='y', size=5, color='teal') ], asList=True) figs.append( cf.datagen.lines(1).figure(bestfit=False, colors=['blue'], bestfit_colors=['pink'])) base_layout = cf.tools.get_base_layout(figs) sp = cf.subplots( figs, shape=(3, 2), base_layout=base_layout, vertical_spacing=.15, horizontal_spacing=.03, specs=[[{ 'rowspan': 2 }, {}], [None, {}], [{ 'colspan': 2 }, None]], subplot_titles=['Histogram', 'Scatter 1', 'Scatter 2', 'Bestfit Line']) sp['layout'].update(showlegend=False) return sp
def test_irregular_subplots(): df = cf.datagen.bubble(10, 50, mode='stocks') figs = cf.figures(df, [ dict(kind='histogram', keys='x', color='blue'), dict(kind='scatter', mode='markers', x='x', y='y', size=5), dict(kind='scatter', mode='markers', x='x', y='y', size=5, color='teal')],asList=True) figs.append(cf.datagen.lines(1).figure(bestfit=False, colors=['blue'], bestfit_colors=['pink'])) base_layout = cf.tools.get_base_layout(figs) sp = cf.subplots(figs, shape=(3, 2), base_layout=base_layout, vertical_spacing=.15, horizontal_spacing=.03, specs=[[{'rowspan': 2}, {}], [None, {}], [{'colspan': 2}, None]], subplot_titles=['Histogram', 'Scatter 1', 'Scatter 2', 'Bestfit Line']) sp['layout'].update(showlegend=False) return sp
def test_irregular_subplots(): df = cf.datagen.bubble(10, 50, mode="stocks") figs = cf.figures( df, [ dict(kind="histogram", keys="x", color="blue"), dict(kind="scatter", mode="markers", x="x", y="y", size=5), dict(kind="scatter", mode="markers", x="x", y="y", size=5, color="teal"), ], asList=True, ) figs.append(cf.datagen.lines(1).figure(bestfit=False, colors=["blue"], bestfit_colors=["pink"])) base_layout = cf.tools.get_base_layout(figs) sp = cf.subplots( figs, shape=(3, 2), base_layout=base_layout, vertical_spacing=0.15, horizontal_spacing=0.03, specs=[[{"rowspan": 2}, {}], [None, {}], [{"colspan": 2}, None]], subplot_titles=["Histogram", "Scatter 1", "Scatter 2", "Bestfit Line"], ) sp["layout"].update(showlegend=False) return sp
df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd']) df.scatter_matrix() df = cf.datagen.lines(4) df.iplot(subplots=True, shape=(4, 1), shared_xaxes=True, vertical_spacing=.02, fill=True) df.iplot(subplots=True, subplot_titles=True, legend=False) df = cf.datagen.bubble(10, 50, mode='stocks') figs = cf.figures(df, [ dict(kind='histogram', keys='x', color='blue'), dict(kind='scatter', mode='markers', x='x', y='y', size=5), dict(kind='scatter', mode='markers', x='x', y='y', size=5, color='teal') ], asList=True) figs.append( cf.datagen.lines(1).figure(bestfit=True, colors=['blue'], bestfit_colors=['pink'])) base_layout = cf.tools.get_base_layout(figs) sp = cf.subplots( figs, shape=(3, 2), base_layout=base_layout, vertical_spacing=.15, horizontal_spacing=.03, specs=[[{ 'rowspan': 2
title='up视频质量走势参考', xTitle='时间', yTitle='比率') return df3.figure( kind='lines', orientation='v', ) def month_video_play(self): df1 = self.df_data[[ 'created', 'stat#favorite', 'stat#coin', 'stat#like' ]] df2 = df1.groupby([df1.created.dt.year, df1.created.dt.month]).agg('sum') # df2.iplot(kind='bar', barmode='stack', orientation='v') df2.iplot(kind='histogram', bins=10) return df2 if __name__ == '__main__': upid = 176037767 analysis_video = AnalysisVideo(upid) figs = cf.figures(analysis_video.month_video_play(), [dict(kind='bar', barmode='stack')], asList=True) figs.append(analysis_video.month_video_play_rate()) layout = cf.tools.get_base_layout(figs) sp = cf.subplots(figs, shape=(1, 2), base_layout=layout) sp['layout'].update(showlegend=False) cf.iplot(sp)