def from_pandas_edgelist(df, source="source", destination="destination", edge_attr=None, create_using=Graph, renumber=True): """ Initialize a graph from the edge list. It is an error to call this method on an initialized Graph object. Source argument is source column name and destination argument is destination column name. By default, renumbering is enabled to map the source and destination vertices into an index in the range [0, V) where V is the number of vertices. If the input vertices are a single column of integers in the range [0, V), renumbering can be disabled and the original external vertex ids will be used. If weights are present, edge_attr argument is the weights column name. Parameters ---------- input_df : pandas.DataFrame A DataFrame that contains edge information source : str or array-like source column name or array of column names destination : str or array-like destination column name or array of column names edge_attr : str or None the weights column name. Default is None renumber : bool Indicate whether or not to renumber the source and destination vertex IDs. Default is True. create_using: cugraph.DiGraph or cugraph.Graph Indicate whether to create a directed or undirected graph Returns ------- G : cugraph.DiGraph or cugraph.Graph graph containing edges from the pandas edgelist Examples -------- >>> df = pandas.read_csv('datasets/karate.csv', delimiter=' ', >>> dtype=['int32', 'int32', 'float32'], header=None) >>> G = cugraph.Graph() >>> G.from_pandas_edgelist(df, source='0', destination='1', edge_attr='2', renumber=False) """ if create_using is Graph: G = Graph() elif create_using is DiGraph: G = DiGraph() else: raise Exception("create_using supports Graph and DiGraph") G.from_pandas_edgelist(df, source=source, destination=destination, edge_attr=edge_attr, renumber=renumber) return G
def from_pandas_edgelist(df, source="source", destination="destination", edge_attr=None, create_using=Graph, renumber=True): """ Initialize a graph from the edge list. It is an error to call this method on an initialized Graph object. Source argument is source column name and destination argument is destination column name. By default, renumbering is enabled to map the source and destination vertices into an index in the range [0, V) where V is the number of vertices. If the input vertices are a single column of integers in the range [0, V), renumbering can be disabled and the original external vertex ids will be used. If weights are present, edge_attr argument is the weights column name. Parameters ---------- df : pandas.DataFrame A DataFrame that contains edge information source : str or array-like, optional (default='source') source column name or array of column names destination : str or array-like, optional (default='destination') destination column name or array of column names edge_attr : str or None, optional (default=None) the weights column name. renumber : bool, optional (default=True) Indicate whether or not to renumber the source and destination vertex IDs. create_using: cugraph.DiGraph or cugraph.Graph, optional (default=Graph) Indicate whether to create a directed or undirected graph Returns ------- G : cugraph.DiGraph or cugraph.Graph graph containing edges from the pandas edgelist Examples -------- >>> # Download dataset from >>> # https://github.com/rapidsai/cugraph/datasets/... >>> df = pd.read_csv(datasets_path / 'karate.csv', delimiter=' ', ... header=None, names=["0", "1", "2"], ... dtype={"0": "int32", "1": "int32", "2": "float32"}) >>> G = cugraph.Graph() >>> G.from_pandas_edgelist(df, source='0', destination='1', ... edge_attr='2', renumber=False) """ if create_using is Graph: G = Graph() elif create_using is DiGraph: G = DiGraph() else: raise Exception("create_using supports Graph and DiGraph") G.from_pandas_edgelist(df, source=source, destination=destination, edge_attr=edge_attr, renumber=renumber) return G