예제 #1
0
 def assert_model(pickled_model, data):
     compare_svm(result["model"],
                 pickled_model,
                 data[0],
                 data[1],
                 cmp_sv=0,
                 dcoef_tol=0)
예제 #2
0
 def assert_model(pickled_model, data):
     if result["model"].probability:
         print("Comparing probabilistic svc")
         compare_probabilistic_svm(result["model"], pickled_model, data[0],
                                   data[1], 0, 0)
     else:
         print("comparing base svc")
         compare_svm(result["model"], pickled_model, data[0], data[1])
예제 #3
0
def test_svm_pickle(tmpdir, datatype, nrows, ncols):

    model = cuml.svm.SVC()
    iris = load_iris()
    iris_selection = np.random.RandomState(42).choice([True, False],
                                                      150,
                                                      replace=True,
                                                      p=[0.75, 0.25])
    X_train = iris.data[iris_selection]
    y_train = iris.target[iris_selection]
    y_train = (y_train > 0).astype(datatype)

    model.fit(X_train, y_train)
    model_pickle = pickle_save_load(tmpdir, model)
    compare_svm(model, model_pickle, X_train, y_train, cmp_sv=0, dcoef_tol=0)