예제 #1
0
파일: test_raw.py 프로젝트: zivzone/cupy
    def test_load_ptx(self):
        # generate ptx in the temp dir
        file_path = self._generate_file('ptx')

        # load ptx and test the kernel
        mod = cupy.RawModule(path=file_path, backend=self.backend)
        ker = mod.get_function('test_div')
        x1, x2, y = self._helper(ker, cupy.float32)
        assert cupy.allclose(y, x1 / (x2 + 1.0))
예제 #2
0
파일: test_raw.py 프로젝트: zivzone/cupy
    def test_context_switch_RawKernel(self):
        # run test_basic() on another device

        # For RawKernel, we need to launch it once to force compiling
        x1, x2, y = self._helper(self.kern, cupy.float32)
        cupy.cuda.runtime.setDevice(1)

        x1, x2, y = self._helper(self.kern, cupy.float32)
        assert cupy.allclose(y, x1 + x2)
예제 #3
0
def general_array_equality(arr1, arr2):
    """Allows checking of equality with both HOOMDArrays and HOOMDGPUArrays."""
    if any(np.issubdtype(a.dtype, np.floating) for a in (arr1, arr2)):
        if any(isinstance(a, HOOMDGPUArray) for a in (arr1, arr2)):
            return cupy.allclose(arr1, arr2)
        else:
            return np.allclose(arr1, arr2)
    else:
        return all(arr1.ravel() == arr2.ravel())
예제 #4
0
    def test_transform_resnet18(self):
        """ """
        cp.random.seed(0)
        cp.cuda.Device(0).use()

        with chainer.using_config('dtype', 'float16'):
            cfg = {
                'loss_scale_method': 'fixed',
                'fixed_loss_scale': 1.,
            }
            net1 = resnet18(n_class=10)
            net1.to_device(0)

            x_data = cp.random.normal(size=(2, 3, 224, 224)).astype('float16')
            x = chainer.Variable(x_data)

            y1 = net1(x)
            net1_params = list(net1.namedparams())

            net2 = AdaLossScaled(net1,
                                 init_scale=1.,
                                 transforms=[
                                     AdaLossTransformLinear(),
                                     AdaLossTransformBasicBlock(),
                                     AdaLossTransformConv2DBNActiv(),
                                 ],
                                 cfg=cfg,
                                 verbose=True)
            net2.to_device(0)
            y2 = net2(x)
            net2_params = list(net2.namedparams())

            self.assertEqual(len(net1_params), len(net2_params))
            for i, p in enumerate(net1_params):
                self.assertTrue(
                    cp.allclose(p[1].array, net2_params[i][1].array))

            self.assertTrue(cp.allclose(y1.array, y2.array))

            # Should not raise error
            y_data = cp.random.normal(size=(2, 10)).astype('float16')
            y2.grad = y_data
            y2.backward()
예제 #5
0
    def test_cuFloatComplex(self):
        N = 100
        block = 32
        grid = (N + block - 1) // block
        dtype = cupy.complex64

        mod = cupy.RawModule(
            code=_test_cuComplex,
            translate_cucomplex=True)
        a = cupy.random.random((N,)) + 1j*cupy.random.random((N,))
        a = a.astype(dtype)
        b = cupy.random.random((N,)) + 1j*cupy.random.random((N,))
        b = b.astype(dtype)
        c = cupy.random.random((N,)) + 1j*cupy.random.random((N,))
        c = c.astype(dtype)
        out = cupy.zeros((N,), dtype=dtype)
        out_float = cupy.zeros((N,), dtype=cupy.float32)
        out_up = cupy.zeros((N,), dtype=cupy.complex128)

        ker = mod.get_function('test_addf')
        ker((grid,), (block,), (a, b, out))
        assert (out == a + b).all()

        ker = mod.get_function('test_subf')
        ker((grid,), (block,), (a, b, out))
        assert (out == a - b).all()

        ker = mod.get_function('test_mulf')
        ker((grid,), (block,), (a, b, out))
        assert (out == a * b).all()

        ker = mod.get_function('test_divf')
        ker((grid,), (block,), (a, b, out))
        assert (out == a / b).all()

        ker = mod.get_function('test_conjf')
        ker((grid,), (block,), (a, out))
        assert (out == cupy.conj(a)).all()

        ker = mod.get_function('test_absf')
        ker((grid,), (block,), (a, out_float))
        assert (out_float == cupy.abs(a)).all()

        ker = mod.get_function('test_fmaf')
        ker((grid,), (block,), (a, b, c, out))
        assert (out == a * b + c).all()

        ker = mod.get_function('test_makef')
        ker((grid,), (block,), (out,))
        # because of precision issue, the (A==B).all() semantics would fail
        assert cupy.allclose(out, 1.8 - 1j * 8.7)

        ker = mod.get_function('test_upcast')
        ker((grid,), (block,), (a, out_up))
        assert (out_up == a.astype(cupy.complex128)).all()
예제 #6
0
 def _helper2(self, type_str):
     mod2 = cupy.RawModule(code=std_code,
                           jitify=self.jitify,
                           name_expressions=['shift<%s>' % type_str, ],
                           options=('--std=c++11',))
     ker = mod2.get_function('shift<%s>' % type_str)
     N = 256
     a = cupy.random.random_integers(0, 7, N).astype(cupy.int32)
     b = a.copy()
     ker((1,), (N,), (a, N))
     assert cupy.allclose(a, b+100)
예제 #7
0
 def _helper(self):
     N = 10
     x1 = cupy.arange(N**2, dtype=cupy.float32).reshape(N, N)
     x2 = cupy.ones((N, N), dtype=cupy.float32)
     y = cupy.zeros((N, N), dtype=cupy.float32)
     if self.raw == 'ker':
         ker = self.ker
     else:
         ker = self.mod.get_function('test_sum')
     ker((N,), (N,), (x1, x2, y, N**2))
     assert cupy.allclose(x1 + x2, y)
예제 #8
0
파일: test_raw.py 프로젝트: wphicks/cupy
 def test_compile_kernel(self):
     kern = cupy.RawKernel(
         _test_compile_src, 'test_op',
         options=('-DOP=+',),
         backend=self.backend)
     log = io.StringIO()
     with use_temporary_cache_dir():
         kern.compile(log_stream=log)
     assert 'warning' in log.getvalue()
     x1, x2, y = self._helper(kern, cupy.float32)
     assert cupy.allclose(y, x1 + x2)
예제 #9
0
파일: test_raw.py 프로젝트: zelo2/cupy
 def test_compile_module(self):
     module = cupy.RawModule(code=_test_compile_src,
                             backend=self.backend,
                             options=('-DOP=+', ))
     log = io.StringIO()
     with use_temporary_cache_dir():
         module.compile(log_stream=log)
     assert 'warning' in log.getvalue()
     kern = module.get_function('test_op')
     x1, x2, y = self._helper(kern, cupy.float32)
     assert cupy.allclose(y, x1 + x2)
예제 #10
0
    def test_context_switch_RawModule4(self):
        # run test_load_cubin() on another device
        # generate cubin in the temp dir and load it on device 0
        file_path = self._generate_file('cubin')
        mod = cupy.RawModule(path=file_path, backend=self.backend)
        ker = mod.get_function('test_div')
        # in this test, reloading happens at kernel launch
        cupy.cuda.runtime.setDevice(1)

        x1, x2, y = self._helper(ker, cupy.float32)
        assert cupy.allclose(y, x1 / (x2 + 1.0))
예제 #11
0
    def test_distance(self):
        total_samples = 2
        # window = 3
        long_window = 59
        short_window = 19
        target_vol = 0.05
        log_return = self.df
        first_sample = log_return['sample_id'].min().item()
        all_dates = log_return[first_sample == log_return['sample_id']]['date']
        all_dates = all_dates.reset_index(drop=True)
        months_start = _get_month_start_pos(all_dates)
        for window in range(len(months_start)):
            if (months_start[window] - long_window) > 0:
                break
        print(window)
        print('offset', months_start[window] - long_window)
        port_return_ma = log_return['portfolio'].values.reshape(
            total_samples, -1)
        number_of_threads = 256
        num_months = len(months_start) - window
        if num_months == 0:  # this case, use all the data to compute
            num_months = 1
        number_of_blocks = num_months * total_samples
        leverage = cupy.zeros((total_samples, num_months))
        leverage_for_target_vol[(number_of_blocks, ), (number_of_threads, ), 0,
                                256 * MAX_YEARS * 8](leverage, port_return_ma,
                                                     months_start, num_months,
                                                     window, long_window,
                                                     short_window, target_vol)

        for sample in range(2):
            for num in range(num_months):

                end_id = months_start[num + window]
                mean = port_return_ma[sample,
                                      end_id - long_window:end_id].mean()
                sd_long = cupy.sqrt(
                    ((port_return_ma[sample, end_id - long_window:end_id] -
                      mean)**2).mean())
                # print('long', sd_long)
                mean = (port_return_ma[sample,
                                       end_id - short_window:end_id].mean())
                sd_short = cupy.sqrt(
                    ((port_return_ma[sample, end_id - short_window:end_id] -
                      mean)**2).mean())

                # print('sort', sd_short)
                max_sd = max(sd_long, sd_short)
                lev = target_vol / (max_sd * math.sqrt(252))
                # print(lev)
                # print(leverage[sample, num], lev-leverage[sample, num])
                # compute = means[sample][num]
                self.assertTrue(cupy.allclose(leverage[sample, num], lev))
예제 #12
0
def test_multichannel():
    a = cp.zeros((5, 5, 3))
    a[1, 1] = cp.arange(1, 4)
    gaussian_rgb_a = gaussian(a, sigma=1, mode='reflect', multichannel=True)
    # Check that the mean value is conserved in each channel
    # (color channels are not mixed together)
    assert cp.allclose([a[..., i].mean() for i in range(3)],
                       [gaussian_rgb_a[..., i].mean() for i in range(3)])
    # Test multichannel = None
    with expected_warnings(["multichannel"]):
        gaussian_rgb_a = gaussian(a, sigma=1, mode="reflect")
    # Check that the mean value is conserved in each channel
    # (color channels are not mixed together)
    assert cp.allclose([a[..., i].mean() for i in range(3)],
                       [gaussian_rgb_a[..., i].mean() for i in range(3)])
    # Iterable sigma
    gaussian_rgb_a = gaussian(a,
                              sigma=[1, 2],
                              mode='reflect',
                              multichannel=True)
    assert cp.allclose([a[..., i].mean() for i in range(3)],
                       [gaussian_rgb_a[..., i].mean() for i in range(3)])
예제 #13
0
def test_log_polar_mapping():
    # fmt: off
    output_coords = cp.array([[0, 0], [0, 90], [0, 180], [0, 270], [99, 0],
                              [99, 180], [99, 270], [99, 45]])
    ground_truth = cp.array([[101, 100], [100, 101], [99, 100], [100, 99],
                             [195.4992586, 100], [4.5007414, 100],
                             [100, 4.5007414], [167.52817336, 167.52817336]])
    # fmt: on
    k_angle = 360 / (2 * np.pi)
    k_radius = 100 / cp.log(100)
    center = (100, 100)
    coords = _log_polar_mapping(output_coords, k_angle, k_radius, center)
    assert cp.allclose(coords, ground_truth)
예제 #14
0
def test_linear_polar_mapping():
    # fmt: off
    output_coords = cp.array([[0, 0], [0, 90], [0, 180], [0, 270], [99, 0],
                              [99, 180], [99, 270], [99, 45]])
    ground_truth = cp.array([[100, 100], [100, 100], [100, 100], [100, 100],
                             [199, 100], [1, 100], [100, 1],
                             [170.00357134, 170.00357134]])
    # fmt: on
    k_angle = 360 / (2 * np.pi)
    k_radius = 1
    center = (100, 100)
    coords = _linear_polar_mapping(output_coords, k_angle, k_radius, center)
    assert cp.allclose(coords, ground_truth)
def test_cupy_cufft_inverse_forward():
    a = cp.array([[3.14, 4.25, 5.36], [4, 5, 6], [1.23, 4.56, 7.89]],
                 dtype=cp.complex128)
    b = Test_Cupy.test_cupy_cufft_inverse_forward(a.data.ptr, a.size,
                                                  a.shape[0], a.shape[1])

    print()
    print("Test 3")
    print(a)
    print(b)

    assert (
        cp.allclose(a, b)
    )  #array_uqual wont work because there is still a very very small difference
예제 #16
0
파일: test_raw.py 프로젝트: takagi/cupy
    def test_template_specialization(self):
        if self.backend == 'nvcc':
            self.skipTest('nvcc does not support template specialization')

        # TODO(leofang): investigate why hiprtc generates a wrong source code
        # when the same code is compiled and discarded. It seems hiprtc has
        # an internal cache that conflicts with the 2nd compilation attempt.
        if cupy.cuda.runtime.is_hip and hasattr(self, 'clean_up'):
            self.skipTest('skip a potential hiprtc bug')

        # compile code
        if cupy.cuda.runtime.is_hip:
            # ROCm 5.0 returns HIP_HIPRTC_ERROR_NAME_EXPRESSION_NOT_VALID for
            # my_sqrt<complex<double>>, so we use thrust::complex<double>
            # instead.
            name_expressions = [
                'my_sqrt<int>', 'my_sqrt<float>',
                'my_sqrt<thrust::complex<double>>', 'my_func'
            ]
        else:
            name_expressions = [
                'my_sqrt<int>', 'my_sqrt<float>', 'my_sqrt<complex<double>>',
                'my_func'
            ]
        mod = cupy.RawModule(code=test_cxx_template,
                             options=('--std=c++11', ),
                             name_expressions=name_expressions,
                             jitify=self.jitify)

        dtypes = (cupy.int32, cupy.float32, cupy.complex128, cupy.float64)
        for ker_T, dtype in zip(name_expressions, dtypes):
            # get specialized kernels
            if cupy.cuda.runtime.is_hip:
                # TODO(leofang): investigate why getLoweredName has no error
                # but returns an empty string for my_sqrt<complex<double>>
                mangled_name = mod.module.mapping.get(ker_T)
                if mangled_name == '':
                    continue
            ker = mod.get_function(ker_T)

            # prepare inputs & expected outputs
            in_arr = cupy.testing.shaped_random((10, ), dtype=dtype)
            out_arr = in_arr**2

            # run
            ker((1, ), (10, ), (in_arr, 10))

            # check results
            assert cupy.allclose(in_arr, out_arr)
예제 #17
0
    def _helper(self, header, options=()):
        code = header
        code += _test_source1
        mod1 = cupy.RawModule(code=code,
                              backend='nvrtc',
                              options=options,
                              jitify=self.jitify)

        N = 10
        x1 = cupy.arange(N**2, dtype=cupy.float32).reshape(N, N)
        x2 = cupy.ones((N, N), dtype=cupy.float32)
        y = cupy.zeros((N, N), dtype=cupy.float32)
        ker = mod1.get_function('test_sum')
        ker((N,), (N,), (x1, x2, y, N**2))
        assert cupy.allclose(x1 + x2, y)
def test_cupy_cufft_inverse_forward_with_caster():
    a = cp.array([[3.14, 4.25, 5.36], [4, 5, 6], [1.23, 4.56, 7.89]],
                 dtype=cp.complex128)
    b = cupy_ref.Cupy_Ref(ptr=a.data.ptr,
                          shape=a.shape,
                          dtype=a.dtype,
                          typestr=a.dtype.str)
    c = Test_Cupy.test_cupy_cufft_inverse_forward_with_caster(b)

    print()
    print("Test 6")
    print(a)
    print(c)

    assert (
        cp.allclose(a, c)
    )  #array_uqual wont work because there is still a very very small difference