예제 #1
0
def main():

    raise Exception(
        'Test is not working (free(): invalid pointer after Metafor sucessfull run). AFAIK, it was not tested anymore when I started with CUPyDO.\n'
    )

    # --- Set up MPI --- #
    withMPI, comm, myid, numberPart = cupyutil.getMpi()
    rootProcess = 0

    # --- Initialize the solid solver --- #
    solid = None
    if myid == rootProcess:
        import cupydo.interfaces.Metafor as sItf
        solid = sItf.Metafor('beam', 'unsteady')
    cupyutil.mpiBarrier(comm)

    # --- Initialize the FSI algorithm --- #
    fsi_algo = cupyalgo.FsiSolidTestAlgorithm(solid)

    # --- Launch the FSI computation --- #
    fsi_algo.run()

    # --- Exit the solid solver --- #
    if myid == rootProcess:
        solid.exit()

    # --- Exit computation --- #
    cupyutil.mpiBarrier(comm)
    return 0
def main(_p, nogui): # NB, the argument 'nogui' is specific to PFEM only!
    
    p = getParameters(_p)
    
    # --- Workspace set up --- #
    withMPI = False
    comm = None
    myid = 0
    numberPart = 0
    rootProcess = 0
    
    cupyutil.load(p['testName'], withMPI, comm, myid, numberPart)
    
    # --- Input parameters --- #
    cfd_file = p['cfdFile']
    csd_file = p['csdFile']
    
    # --- Initialize the fluid solver --- #
    import cupydo.interfaces.Pfem as fItf
    fluidSolver = fItf.Pfem(cfd_file, 14, p['dt'])
    fluidSolver.pfem.pbl.betaFSI = p['betaFSI']
    
    # --- This part is specific to PFEM ---
    fluidSolver.pfem.scheme.nthreads = p['nthreads']
    fluidSolver.pfem.scheme.savefreq = p['saveFreqPFEM']
    if nogui:
        fluidSolver.pfem.gui = None
    # ---
    
    cupyutil.mpiBarrier(comm)
    
    # --- Initialize the solid solver --- #
    solidSolver = None
    if myid == rootProcess:
        import cupydo.interfaces.Metafor as sItf
        solidSolver = sItf.Metafor(csd_file, p['computationType'])
        
        # --- This part is specific to Metafor ---
        solidSolver.saveAllFacs = p['mtfSaveAllFacs']
        
    cupyutil.mpiBarrier(comm)
        
    # --- Initialize the FSI manager --- #
    manager = cupyman.Manager(fluidSolver, solidSolver, p['nDim'], p['computationType'], comm)
    cupyutil.mpiBarrier()

    # --- Initialize the interpolator --- #
    interpolator = cupyinterp.MatchingMeshesInterpolator(manager, fluidSolver, solidSolver, comm)
    
    # --- Initialize the FSI criterion --- #
    criterion = cupycrit.DispNormCriterion(p['tollFSI'])
    cupyutil.mpiBarrier()
    
    # --- Initialize the FSI algorithm --- #
    algorithm = cupyalgo.AlgorithmBGSAitkenRelax(manager, fluidSolver, solidSolver, interpolator, criterion, p['nFSIIterMax'], p['dt'], p['tTot'], p['timeIterTreshold'], p['omegaMax'], comm)
    algorithm.atikenCrit = p['aitkenCrit']
    
    # --- Launch the FSI computation --- #
    algorithm.run()
예제 #3
0
def main(_p, nogui): # NB, the argument 'nogui' is specific to PFEM only!
    
    p = getParameters(_p)

    # --- Workspace set up --- #
    withMPI = False
    comm = None
    myid = 0
    numberPart = 0
    rootProcess = 0
    
    
    
    # --- Input parameters --- #
    cfd_file = 'waterColoumnWithElasticGate_water_Pfem'
    csd_file = 'waterColoumnWithElasticGate_gate_Mtf_rho_1100'
    
    # --- Initialize the fluid solver --- #
    import cupydo.interfaces.Pfem as fItf
    fluidSolver = fItf.Pfem(cfd_file, 17, p['dt'])
    
    # --- This part is specific to PFEM ---
    fluidSolver.pfem.scheme.nthreads = p['nthreads']
    fluidSolver.pfem.scheme.savefreq = p['saveFreqPFEM']
    if nogui:
        fluidSolver.pfem.gui = None
    # ---
    
    cupyutil.mpiBarrier(comm)
    
    # --- Initialize the solid solver --- #
    solidSolver = None
    if myid == rootProcess:
        import cupydo.interfaces.Metafor as sItf
        solidSolver = sItf.Metafor(csd_file, p['computationType'])
        
        # --- This part is specific to Metafor ---
        solidSolver.saveAllFacs = p['mtfSaveAllFacs']
        
    cupyutil.mpiBarrier(comm)
        
    # --- Initialize the FSI manager --- #
    manager = cupyman.Manager(fluidSolver, solidSolver, p['nDim'], p['computationType'], comm)
    cupyutil.mpiBarrier()

    # --- Initialize the interpolator --- #
    interpolator = cupyinterp.MatchingMeshesInterpolator(manager, fluidSolver, solidSolver, comm)
    
    # --- Initialize the FSI criterion --- #
    criterion = cupycrit.DispNormCriterion(p['tollFSI'])
    cupyutil.mpiBarrier()
    
    # --- Initialize the FSI algorithm --- #
    algorithm = cupyalgo.AlgorithmIQN_ILS(manager, fluidSolver, solidSolver, interpolator, criterion, p['nFSIIterMax'], p['dt'], p['tTot'], p['timeIterTreshold'], p['omegaMax'], p['nbTimeToKeep'], p['computeTangentMatrixBasedOnFirstIt'], comm)
    algorithm.useQR = True
    
    # --- Launch the FSI computation --- #
    algorithm.run()
def main(_p, nogui):
    
    p = getParameters(_p)
    
    # --- Workspace set up --- #
    withMPI = False
    comm = None
    myid = 0
    numberPart = 0
    rootProcess = 0
    
    
    
    cfd_file = 'birdImpact_deformable_panel_bird_Pfem'
    csd_file = 'birdImpact_deformable_panel_panel_alu_Mtf'
    
    # --- Initialize the fluid solver --- #
    import cupydo.interfaces.Pfem as fItf
    fluidSolver = fItf.Pfem(cfd_file, 13, p['dt'])
    
    # --- This part is specific to PFEM ---
    fluidSolver.pfem.scheme.nthreads = p['nthreads']
    fluidSolver.pfem.scheme.savefreq = p['saveFreqPFEM']
    if nogui:
        fluidSolver.pfem.gui = None
    # ---
    
    cupyutil.mpiBarrier(comm)
    
    # --- Initialize the solid solver --- #
    solidSolver = None
    if myid == rootProcess:
        import cupydo.interfaces.Metafor as sItf
        solidSolver = sItf.Metafor(csd_file, p['computationType'])
        
        # --- This part is specific to Metafor ---
        solidSolver.saveAllFacs = p['mtfSaveAllFacs']
        
    cupyutil.mpiBarrier(comm)
        
    # --- Initialize the FSI manager --- #
    manager = cupyman.Manager(fluidSolver, solidSolver, p['nDim'], p['computationType'], comm)
    cupyutil.mpiBarrier()

    # --- Initialize the interpolator --- #
    interpolator = cupyinterp.MatchingMeshesInterpolator(manager, fluidSolver, solidSolver, comm)
    
    # --- Initialize the FSI criterion --- #
    criterion = cupycrit.DispNormCriterion(p['tollFSI'])
    cupyutil.mpiBarrier()
    
    # --- Initialize the FSI algorithm --- #
    algorithm = cupyalgo.AlgorithmBGSAitkenRelax(manager, fluidSolver, solidSolver, interpolator, criterion, p['nFSIIterMax'], p['dt'], p['tTot'], p['timeIterTreshold'], p['omegaMax'], comm)
    
    # --- Launch the FSI computation --- #
    algorithm.run()
예제 #5
0
 def __initSolid(self, p, myId):
     """Initialize fluid solver interface
     Adrien Crovato
     """
     solidSolver = None
     if myId == 0: # only master can instantiate the solid solver
         if p['solidSolver'] == 'Metafor':
             import cupydo.interfaces.Metafor as sItf
             solidSolver = sItf.Metafor(p['csdFile'], p['compType'])
         elif p['solidSolver'] == 'RBMI':
             import cupydo.interfaces.RBMI as sItf
             solidSolver = sItf.RBMI(p['csdFile'], p['compType'])
         elif p['solidSolver'] == 'Modal':
             import cupydo.interfaces.Modal as sItf
             solidSolver = sItf.Modal(p['csdFile'], p['compType'])
         elif p['solidSolver'] == 'GetDP':
             import cupydo.interfaces.GetDP as sItf
             raise RuntimeError('GetDP interface not up-to-date!\n')
         else:
             raise RuntimeError('Interface for', p['solidSolver'], 'not found!\n')
     return solidSolver
def main(_p, nogui):  # NB, the argument 'nogui' is specific to PFEM only!

    p = getParameters(_p)

    # --- Workspace set up --- #
    withMPI = False
    comm = None
    myid = 0
    numberPart = 0
    rootProcess = 0

    cfd_file = 'VIV_cantileverBeam_air_Pfem'
    csd_file = 'VIV_cantileverBeam_beam_Mtf'
    nDim = 2
    tollFSI = 1e-6
    dt = 0.0005
    tTot = 10.
    nFSIIterMax = 10
    omegaMax = 1.0
    computationType = 'unsteady'

    # --- Initialize the fluid solver --- #
    import cupydo.interfaces.Pfem as fItf
    fluidSolver = fItf.Pfem(cfd_file, 23, dt)

    # --- This part is specific to PFEM ---
    fluidSolver.pfem.scheme.nthreads = p['nthreads']
    if battery:
        fluidSolver.pfem.scheme.savefreq = int(tTot / dt)
    if nogui:
        fluidSolver.pfem.gui = None
    # ---

    cupyutil.mpiBarrier(comm)

    # --- Initialize the solid solver --- #
    solidSolver = None
    if myid == rootProcess:
        import cupydo.interfaces.Metafor as sItf
        solidSolver = sItf.Metafor(csd_file, computationType)

        # --- This part is specific to Metafor ---
        if battery:
            solidSolver.saveAllFacs = False
        # ---

    cupyutil.mpiBarrier(comm)

    # --- Initialize the FSI manager --- #
    manager = cupyman.Manager(fluidSolver, solidSolver, nDim, computationType,
                              comm)
    cupyutil.mpiBarrier()

    # --- Initialize the interpolator --- #
    interpolator = cupyinterp.MatchingMeshesInterpolator(
        manager, fluidSolver, solidSolver, comm)

    # --- Initialize the FSI criterion --- #
    criterion = cupycrit.DispNormCriterion(tollFSI)
    cupyutil.mpiBarrier()

    # --- Initialize the FSI algorithm --- #
    algorithm = cupyalgo.AlgorithmBGSAitkenRelax(manager, fluidSolver,
                                                 solidSolver, interpolator,
                                                 criterion, nFSIIterMax, dt,
                                                 tTot, 0, omegaMax, comm)

    # --- Launch the FSI computation --- #
    algorithm.run()
예제 #7
0
def main(_p, nogui):  # NB, the argument 'nogui' is specific to PFEM only!

    p = getParameters(_p)

    # --- Workspace set up --- #
    withMPI = False
    comm = None
    myid = 0
    numberPart = 0
    rootProcess = 0

    # --- Input parameters --- #
    cfd_file = 'waterColoumnFallWithFlexibleObstacle_water_Pfem_NotMatching'
    csd_file = 'waterColoumnFallWithFlexibleObstacle_obstacle_Mtf_E_1_0e6_NotMatching'

    # --- Initialize the fluid solver --- #
    import cupydo.interfaces.Pfem as fItf
    fluidSolver = fItf.Pfem(cfd_file, 17, p['dt'])

    # --- This part is specific to PFEM ---
    fluidSolver.pfem.scheme.nthreads = p['nthreads']
    fluidSolver.pfem.scheme.savefreq = p['saveFreqPFEM']
    if nogui:
        fluidSolver.pfem.gui = None
    # ---

    cupyutil.mpiBarrier(comm)

    # --- Initialize the solid solver --- #
    solidSolver = None
    if myid == rootProcess:
        import cupydo.interfaces.Metafor as sItf
        solidSolver = sItf.Metafor(csd_file, p['computationType'])

        # --- This part is specific to Metafor ---
        solidSolver.saveAllFacs = p['mtfSaveAllFacs']

    cupyutil.mpiBarrier(comm)

    # --- Initialize the FSI manager --- #
    manager = cupyman.Manager(fluidSolver, solidSolver, p['nDim'],
                              p['computationType'], comm)
    cupyutil.mpiBarrier()

    # --- Initialize the interpolator --- #
    #interpolator = cupyinterp.MatchingMeshesInterpolator(manager, fluidSolver, solidSolver, comm)
    interpolator = cupyinterp.RBFInterpolator(manager, fluidSolver,
                                              solidSolver, p['rbfRadius'],
                                              comm)
    #interpolator = cupyinterp.TPSInterpolator(manager, fluidSolver, solidSolver, comm)

    # --- Initialize the FSI criterion --- #
    criterion = cupycrit.DispNormCriterion(p['tollFSI'])
    cupyutil.mpiBarrier()

    # --- Initialize the FSI algorithm --- #
    algorithm = cupyalgo.AlgorithmBGSAitkenRelax(manager, fluidSolver,
                                                 solidSolver, interpolator,
                                                 criterion, p['nFSIIterMax'],
                                                 p['dt'], p['tTot'],
                                                 p['timeIterTreshold'],
                                                 p['omegaMax'], comm)

    # --- Launch the FSI computation --- #
    algorithm.run()