예제 #1
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    if log_dir is None:
        log_dir = "/home/michael/"
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=3)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(AntMazeEnv())

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    fixed_start_generator = FixedStateGenerator(state=v['ultimate_goal'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=fixed_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[-3:-1],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        inner_weight=v['inner_weight'],
        goal_weight=v['goal_weight'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16, 16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    #baseline = LinearFeatureBaseline(env_spec=env.spec)
    if v["baseline"] == "MLP":
        baseline = GaussianMLPBaseline(env_spec=env.spec)
    else:
        baseline = LinearFeatureBaseline(env_spec=env.spec)

    # load the state collection from data_upload

    all_starts = StateCollection(distance_threshold=v['coll_eps'], states_transform=lambda x: x[:, :2])

    # can also filter these starts optionally

    load_dir = 'sandbox/young_clgan/experiments/starts/maze/maze_ant/'
    all_feasible_starts = pickle.load(
        open(osp.join(config.PROJECT_PATH, load_dir, 'good_all_feasible_starts.pkl'), 'rb'))
    logger.log("We have %d feasible starts" % all_feasible_starts.size)

    min_reward = 0.1
    max_reward = 0.9
    improvement_threshold = 0
    old_rewards = None

    # hardest to easiest
    init_pos = [[0, 0],
                [1, 0],
                [2, 0],
                [3, 0],
                [4, 0],
                [4, 1],
                [4, 2],
                [4, 3],
                [4, 4],
                [3, 4],
                [2, 4],
                [1, 4]
                ][::-1]
    for pos in init_pos:
        pos.extend([0.55, 1, 0, 0, 0, 0, 1, 0, -1, 0, -1, 0, 1, ])
    array_init_pos = np.array(init_pos)
    init_pos = [tuple(pos) for pos in init_pos]
    online_start_generator = Online_TCSL(init_pos)


    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        report.save()

        # generate starts from the previous seed starts, which are defined below
        dist = online_start_generator.get_distribution() # added
        logger.log(np.array_str(online_start_generator.get_q()))
        # how to log Q values?
        # with logger.tabular_prefix("General: "):
        #     logger.record_tabular("Q values:", online_start_generator.get_q())
        logger.log(np.array_str(dist))

        # Following code should be indented
        with ExperimentLogger(log_dir, outer_iter // 50, snapshot_mode='last', hold_outter_log=True):
            logger.log("Updating the environment start generator")
            #TODO: might be faster to sample if we just create a roughly representative UniformListStateGenerator?
            env.update_start_generator(
                ListStateGenerator(
                    init_pos, dist
                )
            )

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                discount=v['discount'],
                plot=False,
            )

            trpo_paths = algo.train()



        logger.log("Labeling the starts")
        [starts, labels, mean_rewards, updated] = label_states_from_paths(trpo_paths, n_traj=v['n_traj'], key='goal_reached',  # using the min n_traj
                                                   as_goal=False, env=env, return_mean_rewards=True, order_of_states=init_pos)

        start_classes, text_labels = convert_label(labels)
        plot_labeled_states(starts, labels, report=report, itr=outer_iter, limit=v['goal_range'],
                            center=v['goal_center'], maze_id=v['maze_id'])

        online_start_generator.update_q(np.array(mean_rewards), np.array(updated)) # added
        labels = np.logical_and(labels[:, 0], labels[:, 1]).astype(int).reshape((-1, 1))

        # append new states to list of all starts (replay buffer): Not the low reward ones!!
        filtered_raw_starts = [start for start, label in zip(starts, labels) if label[0] == 1]

        if v['seed_with'] == 'only_goods':
            if len(filtered_raw_starts) > 0:  # add a ton of noise if all the states I had ended up being high_reward!
                logger.log("We have {} good starts!".format(len(filtered_raw_starts)))
                seed_starts = filtered_raw_starts
            elif np.sum(start_classes == 0) > np.sum(start_classes == 1):  # if more low reward than high reward
                logger.log("More bad starts than good starts, sampling seeds from replay buffer")
                seed_starts = all_starts.sample(300)  # sample them from the replay
            else:
                logger.log("More good starts than bad starts, resampling")
                seed_starts = generate_starts(env, starts=starts, horizon=v['horizon'] * 2, subsample=v['num_new_starts'], size=10000,
                                              variance=v['brownian_variance'] * 10)
        elif v['seed_with'] == 'all_previous':
            seed_starts = starts
        else:
            raise Exception

        all_starts.append(filtered_raw_starts)

        # need to put this last! otherwise labels variable gets confused
        logger.log("Labeling on uniform starts")
        with logger.tabular_prefix("Uniform_"):
            unif_starts = all_feasible_starts.sample(100)
            mean_reward, paths = evaluate_states(unif_starts, env, policy, v['horizon'], n_traj=v['n_traj'], key='goal_reached',
                                                 as_goals=False, full_path=True)
            env.log_diagnostics(paths)
            mean_rewards = mean_reward.reshape(-1, 1)
            labels = compute_labels(mean_rewards, old_rewards=old_rewards, min_reward=min_reward, max_reward=max_reward,
                                    improvement_threshold=improvement_threshold)
            logger.log("Starts labelled")
            plot_labeled_states(unif_starts, labels, report=report, itr=outer_iter, limit=v['goal_range'],
                                center=v['goal_center'], maze_id=v['maze_id'],
                                summary_string_base='initial starts labels:\n')
            # report.add_text("Success: " + str(np.mean(mean_reward)))

        with logger.tabular_prefix("Fixed_"):
            mean_reward, paths = evaluate_states(array_init_pos, env, policy, v['horizon'], n_traj=5, key='goal_reached',
                                                 as_goals=False, full_path=True)
            env.log_diagnostics(paths)
            mean_rewards = mean_reward.reshape(-1, 1)
            labels = compute_labels(mean_rewards, old_rewards=old_rewards, min_reward=min_reward, max_reward=max_reward,
                                    improvement_threshold=improvement_threshold)
            logger.log("Starts labelled")
            plot_labeled_states(array_init_pos, labels, report=report, itr=outer_iter, limit=v['goal_range'],
                                center=v['goal_center'], maze_id=v['maze_id'],
                                summary_string_base='initial starts labels:\n')
            report.add_text("Fixed Success: " + str(np.mean(mean_reward)))

        report.new_row()
        report.save()
        logger.record_tabular("Fixed test set_success: ", np.mean(mean_reward))
        logger.dump_tabular()
예제 #2
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=4)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))
    report.save()

    inner_env = normalize(Arm3dDiscEnv())

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    fixed_start_generator = FixedStateGenerator(state=v['ultimate_goal'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=fixed_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[-1 * v['goal_size']:],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        inner_weight=v['inner_weight'],
        goal_weight=v['goal_weight'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    # load the state collection from data_upload
    load_dir = 'data_upload/state_collections/'
    all_feasible_starts = pickle.load(
        open(
            osp.join(config.PROJECT_PATH, load_dir,
                     'disc_all_feasible_states_min.pkl'), 'rb'))
    print("we have %d feasible starts" % all_feasible_starts.size)

    all_starts = StateCollection(distance_threshold=v['coll_eps'])
    # brownian_starts = StateCollection(distance_threshold=v['regularize_starts'])
    # with env.set_kill_outside():
    #     seed_starts = generate_starts(env, starts=[v['start_goal']], horizon=10,  # this is smaller as they are seeds!
    #                                   variance=v['brownian_variance'], subsample=v['num_new_starts'])  # , animated=True, speedup=1)
    #
    # with env.set_kill_outside():
    #     find_all_feasible_states(env, seed_starts, distance_threshold=0.1, brownian_variance=1, animate=False)

    # show where these states are:
    # shuffled_starts = np.array(all_feasible_starts.state_list)
    # np.random.shuffle(shuffled_starts)
    # generate_starts(env, starts=shuffled_starts, horizon=100, variance=v['brownian_variance'], animated=True, speedup=10)

    # Use asymmetric self-play to run Alice to generate starts for Bob.
    env_alice = AliceEnv(env, env, policy, v['horizon'])

    policy_alice = GaussianMLPPolicy(
        env_spec=env_alice.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain_alice'],
        init_std=v['policy_init_std_alice'],
    )
    baseline_alice = LinearFeatureBaseline(env_spec=env_alice.spec)

    algo_alice = TRPO(
        env=env_alice,
        policy=policy_alice,
        baseline=baseline_alice,
        batch_size=v['pg_batch_size_alice'],
        max_path_length=v['horizon'],
        n_itr=v['inner_iters_alice'],
        step_size=0.01,
        discount=v['discount_alice'],
        plot=False,
    )

    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        # with env.set_kill_outside():
        #     starts = generate_starts(env, starts=seed_starts, horizon=v['brownian_horizon'], variance=v['brownian_variance'])

        # regularization of the brownian starts
        # brownian_starts.empty()
        # brownian_starts.append(starts)
        # starts = brownian_starts.sample(size=v['num_new_starts'])

        starts = generate_starts_alice(env_bob=env,
                                       env_alice=env_alice,
                                       policy_bob=policy,
                                       policy_alice=policy_alice,
                                       algo_alice=algo_alice,
                                       start_states=[v['start_goal']],
                                       num_new_starts=v['num_new_starts'],
                                       alice_factor=v['alice_factor'],
                                       log_dir=log_dir)

        if v['replay_buffer'] and outer_iter > 0 and all_starts.size > 0:
            old_starts = all_starts.sample(v['num_old_starts'])
            starts = np.vstack([starts, old_starts])

        with ExperimentLogger(log_dir,
                              'last',
                              snapshot_mode='last',
                              hold_outter_log=True):
            logger.log("Updating the environment start generator")
            env.update_start_generator(
                UniformListStateGenerator(
                    starts.tolist(),
                    persistence=v['persistence'],
                    with_replacement=v['with_replacement'],
                ))

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                discount=v['discount'],
                plot=False,
            )

            trpo_paths = algo.train()

        if v['use_trpo_paths']:
            logger.log("labeling starts with trpo rollouts")
            [starts, labels] = label_states_from_paths(
                trpo_paths,
                n_traj=2,
                key='goal_reached',  # using the min n_traj
                as_goal=False,
                env=env)
            paths = [path for paths in trpo_paths for path in paths]
        else:
            logger.log("labeling starts manually")
            labels, paths = label_states(starts,
                                         env,
                                         policy,
                                         v['horizon'],
                                         as_goals=False,
                                         n_traj=v['n_traj'],
                                         key='goal_reached',
                                         full_path=True)

        with logger.tabular_prefix("OnStarts_"):
            env.log_diagnostics(paths)
        logger.record_tabular('starts', starts.size)

        start_classes, text_labels = convert_label(labels)
        total_starts = labels.shape[0]
        logger.record_tabular('GenStarts_evaluated', total_starts)
        start_class_frac = OrderedDict(
        )  # this needs to be an ordered dict!! (for the log tabular)
        for k in text_labels.keys():
            frac = np.sum(start_classes == k) / total_starts
            logger.record_tabular('GenStart_frac_' + text_labels[k], frac)
            start_class_frac[text_labels[k]] = frac

        labels = np.logical_and(labels[:, 0],
                                labels[:, 1]).astype(int).reshape((-1, 1))

        logger.log("Labeling on uniform starts")
        with logger.tabular_prefix("Uniform_"):
            unif_starts = all_feasible_starts.sample(1000)
            mean_reward, paths = evaluate_states(unif_starts,
                                                 env,
                                                 policy,
                                                 v['horizon'],
                                                 n_traj=1,
                                                 key='goal_reached',
                                                 as_goals=False,
                                                 full_path=True)
            env.log_diagnostics(paths)

        logger.dump_tabular(with_prefix=True)

        # append new states to list of all starts (replay buffer): Not the low reward ones!!
        logger.log("Appending good goals to replay and generating seeds")
        filtered_raw_starts = [
            start for start, label in zip(starts, labels) if label[0] == 1
        ]
        all_starts.append(filtered_raw_starts)
예제 #3
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])
    sampling_res = 2 if 'sampling_res' not in v.keys() else v['sampling_res']
    samples_per_cell = 10  # for the oracle rejection sampling

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report and plot_policy_reward...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=5)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(PointMazeEnv(maze_id=v['maze_id']))

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    uniform_start_generator = UniformStateGenerator(state_size=v['start_size'], bounds=v['start_range'],
                                                    center=v['start_center'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=uniform_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[:v['goal_size']],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        only_feasible=v['only_feasible'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16, 16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    if v['constant_baseline']:
        logger.log("Using constant baseline")
        baseline = ConstantBaseline(env_spec=env.spec, value=1.0)
    else:
        logger.log("Using linear baseline")
        baseline = LinearFeatureBaseline(env_spec=env.spec)

    # initialize all logging arrays on itr0
    outer_iter = 0

    logger.log('Generating the Initial Heatmap...')
    plot_policy_means(policy, env, sampling_res=2, report=report, limit=v['goal_range'], center=v['goal_center'])
    test_and_plot_policy(policy, env, as_goals=False, max_reward=v['max_reward'], sampling_res=sampling_res,
                         n_traj=v['n_traj'],
                         itr=outer_iter, report=report, center=v['goal_center'],
                         limit=v['goal_range'])  # use goal for plot
    report.new_row()

    all_starts = StateCollection(distance_threshold=v['coll_eps'])
    seed_starts = generate_starts(env, starts=[v['ultimate_goal']], subsample=v['num_new_starts'])

    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        starts = generate_starts(env, starts=seed_starts, subsample=v['num_new_starts'],
                                 horizon=v['brownian_horizon'], variance=v['brownian_variance'])
        labels = label_states(starts, env, policy, v['horizon'],
                              as_goals=False, n_traj=v['n_traj'], key='goal_reached')
        plot_labeled_states(starts, labels, report=report, itr=outer_iter, limit=v['goal_range'],
                            center=v['goal_center'], maze_id=v['maze_id'],
                            summary_string_base='initial starts labels:\n')
        report.save()

        if v['replay_buffer'] and outer_iter > 0 and all_starts.size > 0:
            old_starts = all_starts.sample(v['num_old_starts'])
            starts = np.vstack([starts, old_starts])

        with ExperimentLogger(log_dir, 'last', snapshot_mode='last', hold_outter_log=True):
            logger.log("Updating the environment start generator")
            env.update_start_generator(
                UniformListStateGenerator(
                    starts.tolist(), persistence=v['persistence'], with_replacement=v['with_replacement'],
                )
            )

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                discount=v['discount'],
                plot=False,
            )

            trpo_paths = algo.train()

        if v['use_trpo_paths']:
            logger.log("labeling starts with trpo rollouts")
            [starts, labels] = label_states_from_paths(trpo_paths, n_traj=2, key='goal_reached',  # using the min n_traj
                                                       as_goal=False, env=env)
            paths = [path for paths in trpo_paths for path in paths]
        else:
            logger.log("labeling starts manually")
            labels, paths = label_states(starts, env, policy, v['horizon'], as_goals=False, n_traj=v['n_traj'],
                                         key='goal_reached', full_path=True)

        with logger.tabular_prefix("OnStarts_"):
            env.log_diagnostics(paths)
        logger.log('Generating the Heatmap...')
        plot_policy_means(policy, env, sampling_res=2, report=report, limit=v['goal_range'], center=v['goal_center'])
        test_and_plot_policy(policy, env, as_goals=False, max_reward=v['max_reward'], sampling_res=sampling_res,
                             n_traj=v['n_traj'],
                             itr=outer_iter, report=report, center=v['goal_center'], limit=v['goal_range'])

        logger.log("Labeling the starts")
        #labels = label_states(starts, env, policy, v['horizon'], as_goals=False, n_traj=v['n_traj'], key='goal_reached')

        plot_labeled_states(starts, labels, report=report, itr=outer_iter, limit=v['goal_range'],
                            center=v['goal_center'], maze_id=v['maze_id'])

        start_classes, text_labels = convert_label(labels)

        # ###### extra for deterministic:
        # logger.log("Labeling the goals deterministic")
        # with policy.set_std_to_0():
        #     labels_det = label_states(goals, env, policy, v['horizon'], n_traj=v['n_traj'], n_processes=1)
        # plot_labeled_states(goals, labels_det, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'])

        labels = np.logical_and(labels[:, 0], labels[:, 1]).astype(int).reshape((-1, 1))

        logger.dump_tabular(with_prefix=False)
        report.new_row()

        # append new states to list of all starts (replay buffer): Not the low reward ones!!
        filtered_raw_starts = [start for start, label in zip(starts, labels) if label[0] == 1]
        all_starts.append(filtered_raw_starts)

        if v['seed_with'] == 'only_goods':
            if len(filtered_raw_starts) > 0:  # add a tone of noise if all the states I had ended up being high_reward!
                seed_starts = filtered_raw_starts
            elif np.sum(start_classes == 0) > np.sum(start_classes == 1):  # if more low reward than high reward
                seed_starts = all_starts.sample(300)  # sample them from the replay
            else:
                seed_starts = generate_starts(env, starts=starts, horizon=int(v['horizon'] * 10), subsample=v['num_new_starts'],
                                                  variance=v['brownian_variance'] * 10)
        elif v['seed_with'] == 'all_previous':
            seed_starts = starts
        elif v['seed_with'] == 'on_policy':
            seed_starts = generate_starts(env, policy, starts=starts, horizon=v['horizon'], subsample=v['num_new_starts'])
예제 #4
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    if log_dir is None:
        log_dir = "/home/michael/"
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=2)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(AntMazeEnv())

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    fixed_start_generator = FixedStateGenerator(state=v['ultimate_goal'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=fixed_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[-3:-1],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        inner_weight=v['inner_weight'],
        goal_weight=v['goal_weight'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    if v["baseline"] == "MLP":
        baseline = GaussianMLPBaseline(env_spec=env.spec)
    else:
        baseline = LinearFeatureBaseline(env_spec=env.spec)

    load_dir = 'sandbox/young_clgan/experiments/starts/maze/maze_ant/'
    all_feasible_starts = pickle.load(
        open(
            osp.join(config.PROJECT_PATH, load_dir,
                     'good_all_feasible_starts.pkl'), 'rb'))
    logger.log("We have %d feasible starts" % all_feasible_starts.size)

    min_reward = 0.1
    max_reward = 0.9
    improvement_threshold = 0
    old_rewards = None

    uniform_start_generator = UniformListStateGenerator(
        state_list=all_feasible_starts.state_list)

    init_pos = [[0, 0], [1, 0], [2, 0], [3, 0], [4, 0], [4, 1], [4, 2], [4, 3],
                [4, 4], [3, 4], [2, 4], [1, 4]][::-1]
    for pos in init_pos:
        pos.extend([
            0.55,
            1,
            0,
            0,
            0,
            0,
            1,
            0,
            -1,
            0,
            -1,
            0,
            1,
        ])
    init_pos = np.array(init_pos)

    env.update_start_generator(uniform_start_generator)
    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        # Following code should be indented
        with ExperimentLogger(log_dir,
                              outer_iter // 50,
                              snapshot_mode='last',
                              hold_outter_log=True):
            logger.log("Updating the environment start generator")
            # env.update_start_generator(uniform_start_generator)
            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                discount=v['discount'],
                plot=False,
            )
            algo.train()

        logger.log("Labeling on uniform starts")
        with logger.tabular_prefix("Uniform_"):
            unif_starts = all_feasible_starts.sample(100)
            mean_reward, paths = evaluate_states(unif_starts,
                                                 env,
                                                 policy,
                                                 v['horizon'],
                                                 n_traj=3,
                                                 key='goal_reached',
                                                 as_goals=False,
                                                 full_path=True)
            env.log_diagnostics(paths)
            mean_rewards = mean_reward.reshape(-1, 1)
            labels = compute_labels(
                mean_rewards,
                old_rewards=old_rewards,
                min_reward=min_reward,
                max_reward=max_reward,
                improvement_threshold=improvement_threshold)
            logger.log("Starts labelled")
            plot_labeled_states(unif_starts,
                                labels,
                                report=report,
                                itr=outer_iter,
                                limit=v['goal_range'],
                                center=v['goal_center'],
                                maze_id=v['maze_id'],
                                summary_string_base='initial starts labels:\n')
            report.add_text("Success: " + str(np.mean(mean_reward)))

        with logger.tabular_prefix("Fixed_"):
            mean_reward, paths = evaluate_states(init_pos,
                                                 env,
                                                 policy,
                                                 v['horizon'],
                                                 n_traj=5,
                                                 key='goal_reached',
                                                 as_goals=False,
                                                 full_path=True)
            env.log_diagnostics(paths)
            mean_rewards = mean_reward.reshape(-1, 1)
            labels = compute_labels(
                mean_rewards,
                old_rewards=old_rewards,
                min_reward=min_reward,
                max_reward=max_reward,
                improvement_threshold=improvement_threshold)
            logger.log("Starts labelled")
            plot_labeled_states(init_pos,
                                labels,
                                report=report,
                                itr=outer_iter,
                                limit=v['goal_range'],
                                center=v['goal_center'],
                                maze_id=v['maze_id'],
                                summary_string_base='initial starts labels:\n')
            report.add_text("Fixed Success: " + str(np.mean(mean_reward)))

        report.new_row()
        report.save()
        logger.record_tabular("Fixed test set_success: ", np.mean(mean_reward))
        logger.dump_tabular()
예제 #5
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    if log_dir is None:
        log_dir = "/home/michael/"
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=3)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(AntMazeEnv())

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    fixed_start_generator = FixedStateGenerator(state=v['ultimate_goal'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=fixed_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[-3:-1],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        inner_weight=v['inner_weight'],
        goal_weight=v['goal_weight'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    if v["baseline"] == "MLP":
        baseline = GaussianMLPBaseline(env_spec=env.spec)
    else:
        baseline = LinearFeatureBaseline(env_spec=env.spec)

    # create Alice

    env_alice = AliceEnv(env_alice=env,
                         env_bob=env,
                         policy_bob=policy,
                         max_path_length=v['alice_horizon'],
                         alice_factor=v['alice_factor'],
                         alice_bonus=v['alice_bonus'],
                         gamma=1,
                         stop_threshold=v['stop_threshold'])

    policy_alice = GaussianMLPPolicy(
        env_spec=env_alice.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain_alice'],
        init_std=v['policy_init_std_alice'],
    )
    if v["baseline"] == "MLP":
        baseline_alice = GaussianMLPBaseline(env_spec=env.spec)
    else:
        baseline_alice = LinearFeatureBaseline(env_spec=env.spec)

    algo_alice = TRPO(
        env=env_alice,
        policy=policy_alice,
        baseline=baseline_alice,
        batch_size=v['pg_batch_size_alice'],
        max_path_length=v['horizon'],
        n_itr=v['inner_iters_alice'],
        step_size=0.01,
        discount=v['discount_alice'],
        plot=False,
    )

    # load the state collection from data_upload

    all_starts = StateCollection(distance_threshold=v['coll_eps'],
                                 states_transform=lambda x: x[:, :2])

    load_dir = 'sandbox/young_clgan/experiments/starts/maze/maze_ant/'
    all_feasible_starts = pickle.load(
        open(
            osp.join(config.PROJECT_PATH, load_dir,
                     'good_all_feasible_starts.pkl'), 'rb'))
    logger.log("We have %d feasible starts" % all_feasible_starts.size)

    min_reward = 0.1
    max_reward = 0.9
    improvement_threshold = 0
    old_rewards = None

    init_pos = [[0, 0], [1, 0], [2, 0], [3, 0], [4, 0], [4, 1], [4, 2], [4, 3],
                [4, 4], [3, 4], [2, 4], [1, 4]][::-1]
    for pos in init_pos:
        pos.extend([
            0.55,
            1,
            0,
            0,
            0,
            0,
            1,
            0,
            -1,
            0,
            -1,
            0,
            1,
        ])
    init_pos = np.array(init_pos)

    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        report.save()

        starts, t_alices = generate_starts_alice(
            env_alice=env_alice,
            algo_alice=algo_alice,
            start_states=[v['start_goal']],
            num_new_starts=v['num_new_starts'],
            log_dir=log_dir)

        if v['filter_bad_starts']:
            logger.log("Prefilter starts: {}".format(len(starts)))
            starts = parallel_check_feasibility(
                env=env,
                starts=starts,
                max_path_length=v['feasibility_path_length'])
            logger.log("Filtered starts: {}".format(len(starts)))

        logger.log("Total number of starts in buffer: {}".format(
            all_starts.size))
        if v['replay_buffer'] and outer_iter > 0 and all_starts.size > 0:
            old_starts = all_starts.sample(v['num_old_starts'])
            starts = np.vstack([starts, old_starts])

        # Following code should be indented
        with ExperimentLogger(log_dir,
                              outer_iter // 50,
                              snapshot_mode='last',
                              hold_outter_log=True):
            logger.log("Updating the environment start generator")
            env.update_start_generator(
                UniformListStateGenerator(
                    starts.tolist(),
                    persistence=v['persistence'],
                    with_replacement=v['with_replacement'],
                ))

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                discount=v['discount'],
                plot=False,
            )

            trpo_paths = algo.train()

        with logger.tabular_prefix('Outer_'):
            logger.record_tabular('t_alices', np.mean(t_alices))

        logger.log("Labeling the starts")
        [starts, labels] = label_states_from_paths(
            trpo_paths,
            n_traj=v['n_traj'],
            key='goal_reached',  # using the min n_traj
            as_goal=False,
            env=env)
        # labels = label_states(starts, env, policy, v['horizon'], as_goals=False, n_traj=v['n_traj'], key='goal_reached')
        start_classes, text_labels = convert_label(labels)
        plot_labeled_states(starts,
                            labels,
                            report=report,
                            itr=outer_iter,
                            limit=v['goal_range'],
                            center=v['goal_center'],
                            maze_id=v['maze_id'])

        labels = np.logical_and(labels[:, 0],
                                labels[:, 1]).astype(int).reshape((-1, 1))

        # append new states to list of all starts (replay buffer): Not the low reward ones!!
        filtered_raw_starts = [
            start for start, label in zip(starts, labels) if label[0] == 1
        ]
        if len(
                filtered_raw_starts
        ) == 0:  # add a tone of noise if all the states I had ended up being high_reward!
            logger.log("Bad Alice!  All goals are high reward!")

        all_starts.append(filtered_raw_starts)

        # Useful plotting and metrics (basic test set)
        # need to put this last! otherwise labels variable gets confused
        logger.log("Labeling on uniform starts")
        with logger.tabular_prefix("Uniform_"):
            unif_starts = all_feasible_starts.sample(100)
            mean_reward, paths = evaluate_states(unif_starts,
                                                 env,
                                                 policy,
                                                 v['horizon'],
                                                 n_traj=v['n_traj'],
                                                 key='goal_reached',
                                                 as_goals=False,
                                                 full_path=True)
            env.log_diagnostics(paths)
            mean_rewards = mean_reward.reshape(-1, 1)
            labels = compute_labels(
                mean_rewards,
                old_rewards=old_rewards,
                min_reward=min_reward,
                max_reward=max_reward,
                improvement_threshold=improvement_threshold)
            logger.log("Starts labelled")
            plot_labeled_states(unif_starts,
                                labels,
                                report=report,
                                itr=outer_iter,
                                limit=v['goal_range'],
                                center=v['goal_center'],
                                maze_id=v['maze_id'],
                                summary_string_base='initial starts labels:\n')
            # report.add_text("Success: " + str(np.mean(mean_reward)))

        with logger.tabular_prefix("Fixed_"):
            mean_reward, paths = evaluate_states(init_pos,
                                                 env,
                                                 policy,
                                                 v['horizon'],
                                                 n_traj=5,
                                                 key='goal_reached',
                                                 as_goals=False,
                                                 full_path=True)
            env.log_diagnostics(paths)
            mean_rewards = mean_reward.reshape(-1, 1)
            labels = compute_labels(
                mean_rewards,
                old_rewards=old_rewards,
                min_reward=min_reward,
                max_reward=max_reward,
                improvement_threshold=improvement_threshold)
            logger.log("Starts labelled")
            plot_labeled_states(init_pos,
                                labels,
                                report=report,
                                itr=outer_iter,
                                limit=v['goal_range'],
                                center=v['goal_center'],
                                maze_id=v['maze_id'],
                                summary_string_base='initial starts labels:\n')
            report.add_text("Fixed Success: " + str(np.mean(mean_reward)))

        report.new_row()
        report.save()
        logger.record_tabular("Fixed test set_success: ", np.mean(mean_reward))
        logger.dump_tabular()
예제 #6
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])

    logger.log("Initializing report...")
    log_dir = logger.get_snapshot_dir()
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=1000)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(AntMazeEnv())

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    fixed_start_generator = FixedStateGenerator(state=v['ultimate_goal'])

    load_dir = 'sandbox/young_clgan/experiments/starts/maze/maze_ant/'
    save_dir = 'data/debug/'
    # with open(os.path.join(config.PROJECT_PATH, save_dir, "test.pkl"), 'wb') as handle:
    #     pickle.dump({}, handle)

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=fixed_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[-3:-1],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        inner_weight=v['inner_weight'],
        goal_weight=v['goal_weight'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    if v["baseline"] == "MLP":
        baseline = GaussianMLPBaseline(env_spec=env.spec)
    else:
        baseline = LinearFeatureBaseline(env_spec=env.spec)

    # load the state collection from data_upload

    all_starts = StateCollection(distance_threshold=v['coll_eps'],
                                 states_transform=lambda x: x[:, :2])

    # initial brownian horizon and size are pretty important
    logger.log("Brownian horizon: {}".format(v['initial_brownian_horizon']))
    seed_starts = generate_starts(
        env,
        starts=[v['start_goal']],
        horizon=v['initial_brownian_horizon'],
        size=15000,
        variance=v['brownian_variance'],
        animated=False,
    )

    if v['filter_bad_starts']:
        logger.log("Prefilter seed starts: {}".format(len(seed_starts)))
        seed_starts = parallel_check_feasibility(
            env=env,
            starts=seed_starts,
            max_path_length=v['feasibility_path_length'])
        logger.log("Filtered seed starts: {}".format(len(seed_starts)))

    # can also filter these starts optionally

    # all_feasible_starts = pickle.load(
    #     open(osp.join(config.PROJECT_PATH, load_dir, 'good_all_feasible_starts.pkl'), 'rb'))
    # logger.log("We have %d feasible starts" % all_feasible_starts.size)

    min_reward = 0.1
    max_reward = 0.9
    improvement_threshold = 0
    old_rewards = None

    init_pos = [[0, 0], [1, 0], [2, 0], [3, 0], [4, 0], [4, 1], [4, 2], [4, 3],
                [4, 4], [3, 4], [2, 4], [1, 4]][::-1]
    for pos in init_pos:
        pos.extend([
            0.55,
            1,
            0,
            0,
            0,
            0,
            1,
            0,
            -1,
            0,
            -1,
            0,
            1,
        ])
    init_pos = np.array(init_pos)

    with open(osp.join(log_dir, 'init_pos.json'), 'w') as f:
        json.dump(init_pos.tolist(), f)

    for outer_iter in range(1, v['outer_iters'] + 1):

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        report.save()

        # generate starts from the previous seed starts, which are defined below
        starts = generate_starts(env,
                                 starts=seed_starts,
                                 subsample=v['num_new_starts'],
                                 size=2000,
                                 horizon=v['brownian_horizon'],
                                 variance=v['brownian_variance'])

        # note: this messes with the balance between starts and old_starts!
        if v['filter_bad_starts']:
            logger.log("Prefilter starts: {}".format(len(starts)))
            starts = parallel_check_feasibility(
                env=env,
                starts=starts,
                max_path_length=v['feasibility_path_length'])
            logger.log("Filtered starts: {}".format(len(starts)))

        logger.log("Total number of starts in buffer: {}".format(
            all_starts.size))
        if v['replay_buffer'] and outer_iter > 0 and all_starts.size > 0:
            # with open(os.path.join(config.PROJECT_PATH, save_dir, "qval{}.pkl".format(outer_iter)), 'wb') as handle:
            #     pickle.dump(all_starts.q_vals, handle)
            # with open(os.path.join(config.PROJECT_PATH, save_dir, "preval{}.pkl".format(outer_iter)), 'wb') as handle:
            #     pickle.dump(all_starts.prev_vals, handle)
            old_starts = all_starts.sample(v['num_old_starts'])
            starts = np.vstack([starts, old_starts])

        # plot starts before training
        # takes too much time
        # labels = label_states(starts, env, policy, v['horizon'],
        #                       as_goals=False, n_traj=v['n_traj'], key='goal_reached')
        # plot_labeled_states(starts, labels, report=report, itr=outer_iter, limit=v['goal_range'],
        #                     center=v['goal_center'], maze_id=v['maze_id'],
        #                     summary_string_base='initial starts labels:\n')

        # Following code should be indented
        with ExperimentLogger(log_dir,
                              outer_iter // 50,
                              snapshot_mode='last',
                              hold_outter_log=True):
            logger.log("Updating the environment start generator")
            env.update_start_generator(
                UniformListStateGenerator(
                    starts.tolist(),
                    persistence=v['persistence'],
                    with_replacement=v['with_replacement'],
                ))

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                discount=v['discount'],
                plot=False,
            )

            trpo_paths = algo.train()

        logger.log("Labeling the starts")

        [starts, labels] = label_states_from_paths(trpo_paths,
                                                   n_traj=v['n_traj'],
                                                   key='goal_reached',
                                                   as_goal=False,
                                                   env=env)

        start_classes, text_labels = convert_label(labels)
        plot_labeled_states(starts,
                            labels,
                            report=report,
                            itr=outer_iter,
                            limit=v['goal_range'],
                            center=v['goal_center'],
                            maze_id=v['maze_id'])

        labels = np.logical_and(labels[:, 0],
                                labels[:, 1]).astype(int).reshape((-1, 1))

        filtered_raw_starts = [
            start for start, label in zip(starts, labels) if label[0] == 1
        ]
        all_starts.append(filtered_raw_starts)

        if v['seed_with'] == 'only_goods':
            if len(
                    filtered_raw_starts
            ) > 0:  # add a ton of noise if all the states I had ended up being high_reward!
                logger.log("We have {} good starts!".format(
                    len(filtered_raw_starts)))
                seed_starts = filtered_raw_starts
            elif np.sum(start_classes == 0) > np.sum(
                    start_classes == 1):  # if more low reward than high reward
                logger.log(
                    "More bad starts than good starts, sampling seeds from replay buffer"
                )
                seed_starts = all_starts.sample(
                    300)  # sample them from the replay
            else:
                logger.log("More good starts than bad starts, resampling")
                seed_starts = generate_starts(env,
                                              starts=starts,
                                              horizon=v['horizon'] * 2,
                                              subsample=v['num_new_starts'],
                                              size=10000,
                                              variance=v['brownian_variance'] *
                                              10)

        elif v['seed_with'] == 'all_previous':
            seed_starts = starts
            filtered_raw_starts = starts  # no filtering done
        else:
            raise Exception

        # need to put this last! otherwise labels variable gets confused
        logger.log("Labeling on uniform starts")
        if not v["debug"]:
            # with logger.tabular_prefix("Uniform_"):
            #     unif_starts = all_feasible_starts.sample(100)
            #     mean_reward, paths = evaluate_states(unif_starts, env, policy, v['horizon'], n_traj=v['n_traj'], key='goal_reached',
            #                                          as_goals=False, full_path=True)
            #     env.log_diagnostics(paths)
            #     mean_rewards = mean_reward.reshape(-1, 1)
            #     labels = compute_labels(mean_rewards, old_rewards=old_rewards, min_reward=min_reward, max_reward=max_reward,
            #                             improvement_threshold=improvement_threshold)
            #     logger.log("Starts labelled")
            #     plot_labeled_states(unif_starts, labels, report=report, itr=outer_iter, limit=v['goal_range'],
            #                         center=v['goal_center'], maze_id=v['maze_id'],
            #                         summary_string_base='initial starts labels:\n')
            #     report.add_text("Uniform Success: " + str(np.mean(mean_reward)))

            with logger.tabular_prefix("Fixed_"):
                mean_reward, paths = evaluate_states(init_pos,
                                                     env,
                                                     policy,
                                                     v['horizon'],
                                                     n_traj=5,
                                                     key='goal_reached',
                                                     as_goals=False,
                                                     full_path=True)

                with open(
                        osp.join(log_dir,
                                 'init_pos_per_state_mean_return.csv'),
                        'a') as f:
                    writer = csv.writer(f)
                    row = [outer_iter] + list(mean_reward)
                    writer.writerow(row)

                env.log_diagnostics(paths)
                mean_rewards = mean_reward.reshape(-1, 1)
                labels = compute_labels(
                    mean_rewards,
                    old_rewards=old_rewards,
                    min_reward=min_reward,
                    max_reward=max_reward,
                    improvement_threshold=improvement_threshold)
                logger.log("Starts labelled")
                plot_labeled_states(
                    init_pos,
                    labels,
                    report=report,
                    itr=outer_iter,
                    limit=v['goal_range'],
                    center=v['goal_center'],
                    maze_id=v['maze_id'],
                    summary_string_base='initial starts labels:\n')
                report.add_text("Fixed Success: " + str(np.mean(mean_reward)))

            report.new_row()
            report.save()
            logger.record_tabular("Fixed test set_success: ",
                                  np.mean(mean_reward))
            logger.dump_tabular()

        if outer_iter == 1 or outer_iter % 5 == 0 and v.get(
                'scratch_dir', False):
            command = 'rsync -a --delete {} {}'.format(
                os.path.join(log_dir, ''), os.path.join(v['scratch_dir'], ''))
            print("Running command:\n{}".format(command))
            subprocess.run(command.split(), check=True)

    if v.get('scratch_dir', False):
        command = 'rsync -a {} {}'.format(os.path.join(log_dir, ''),
                                          os.path.join(v['scratch_dir'], ''))
        print("Running command:\n{}".format(command))
        subprocess.run(command.split(), check=True)
예제 #7
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])
    sampling_res = 2 if 'sampling_res' not in v.keys() else v['sampling_res']

    logger.log("Initializing report and plot_policy_reward...")
    log_dir = logger.get_snapshot_dir()
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=1000)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(PointMazeEnv(maze_id=v['maze_id']))

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    uniform_start_generator = UniformStateGenerator(state_size=v['start_size'], bounds=v['start_range'],
                                                    center=v['start_center'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=uniform_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[:v['goal_size']],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        only_feasible=v['only_feasible'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16, 16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    if v["baseline"] == "MLP":
        baseline = GaussianMLPBaseline(env_spec=env.spec)
    else:
        baseline = LinearFeatureBaseline(env_spec=env.spec)

    # initialize all logging arrays on itr0
    outer_iter = 0
    all_starts = StateCollection(distance_threshold=v['coll_eps'])

    # seed_starts: from which we will be performing brownian motion exploration
    seed_starts = generate_starts(env, starts=[v['ultimate_goal']], subsample=v['num_new_starts'])

    def plot_states(states, report, itr, summary_string, **kwargs):
        states = np.array(states)
        if states.size == 0:
            states = np.zeros((1, 2))
        img = plot_labeled_samples(
            states, np.zeros(len(states), dtype='uint8'), markers={0: 'o'}, text_labels={0: "all"}, **kwargs)
        report.add_image(img, 'itr: {}\n{}'.format(itr, summary_string), width=500)

    for outer_iter in range(1, v['outer_iters']):
        report.new_row()

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        plot_states(
            seed_starts, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'],
            maze_id=v['maze_id'], summary_string="seed starts")

        starts = generate_starts(env, starts=seed_starts, subsample=v['num_new_starts'],
                                 horizon=v['brownian_horizon'], variance=v['brownian_variance'])

        plot_states(
            starts, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'],
            maze_id=v['maze_id'], summary_string="brownian starts")

        sampled_from_buffer = []
        if v['replay_buffer'] and outer_iter > 0 and all_starts.size > 0:
            sampled_from_buffer = all_starts.sample(v['num_old_starts'])
            starts = np.vstack([starts, sampled_from_buffer])

        plot_states(
            sampled_from_buffer, report=report, itr=outer_iter, limit=v['goal_range'],
            center=v['goal_center'], maze_id=v['maze_id'], summary_string="states sampled from buffer")

        labels = label_states(starts, env, policy, v['horizon'], as_goals=False, n_traj=v['n_traj'], key='goal_reached')
        plot_labeled_states(starts, labels, report=report, itr=outer_iter, limit=v['goal_range'],
                            center=v['goal_center'], maze_id=v['maze_id'],
                            summary_string_base='all starts before update\n')

        with ExperimentLogger(log_dir, 'last', snapshot_mode='last', hold_outter_log=True):
            logger.log("Updating the environment start generator")
            env.update_start_generator(
                UniformListStateGenerator(
                    starts.tolist(), persistence=v['persistence'], with_replacement=v['with_replacement'],
                )
            )

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                discount=v['discount'],
                plot=False,
            )

            trpo_paths = algo.train()

        if v['use_trpo_paths']:
            logger.log("labeling starts with trpo rollouts")
            [starts, labels] = label_states_from_paths(
                trpo_paths, n_traj=2, key='goal_reached', as_goal=False, env=env)
            paths = [path for paths in trpo_paths for path in paths]
        else:
            logger.log("labeling starts manually")
            labels, paths = label_states(
                starts, env, policy, v['horizon'], as_goals=False, n_traj=v['n_traj'], key='goal_reached', full_path=True)

        start_classes, text_labels = convert_label(labels)

        plot_labeled_states(starts, labels, report=report, itr=outer_iter, limit=v['goal_range'],
                            center=v['goal_center'], maze_id=v['maze_id'],
                            summary_string_base="all starts after update\n")

        with logger.tabular_prefix("OnStarts_"):
            env.log_diagnostics(paths)

        labels = np.logical_and(labels[:, 0], labels[:, 1]).astype(int).reshape((-1, 1))

        # append new states to list of all starts (replay buffer): Not the low reward ones!!
        filtered_raw_starts = [start for start, label in zip(starts, labels) if label[0] == 1]

        all_starts.append(filtered_raw_starts)

        if v['seed_with'] == 'only_goods':
            if len(filtered_raw_starts) > 0:
                logger.log("Only goods A")
                seed_starts = filtered_raw_starts

            elif np.sum(start_classes == 0) > np.sum(start_classes == 1):  # if more low reward than high reward
                logger.log("Only goods B")
                seed_starts = all_starts.sample(300)  # sample them from the replay

            else:
                logger.log("Only goods C")
                # add a ton of noise if all the states I had ended up being high_reward
                seed_starts = generate_starts(
                    env, starts=starts, horizon=int(v['horizon'] * 10),
                    subsample=v['num_new_starts'], variance=v['brownian_variance'] * 10)

        elif v['seed_with'] == 'all_previous':
            seed_starts = starts

        elif v['seed_with'] == 'on_policy':
            seed_starts = generate_starts(env, policy, starts=starts, horizon=v['horizon'], subsample=v['num_new_starts'])

        logger.log('Generating Heatmap...')
        plot_policy_means(
            policy, env, sampling_res=sampling_res, report=report, limit=v['goal_range'], center=v['goal_center'])

        _, _, states, returns, successes = test_and_plot_policy2(
            policy, env, as_goals=False, max_reward=v['max_reward'], sampling_res=sampling_res, n_traj=v['n_traj'],
            itr=outer_iter, report=report, center=v['goal_center'], limit=v['goal_range'])

        eval_state_path = osp.join(log_dir, "eval_states.json")
        if not osp.exists(eval_state_path):
            with open(eval_state_path, 'w') as f:
                json.dump(np.array(states).tolist(), f)

        with open(osp.join(log_dir, 'eval_pos_per_state_mean_return.csv'), 'a') as f:
            writer = csv.writer(f)
            row = [outer_iter] + list(returns)
            writer.writerow(row)

        with open(osp.join(log_dir, 'eval_pos_per_state_mean_success.csv'), 'a') as f:
            writer = csv.writer(f)
            row = [outer_iter] + list(successes)
            writer.writerow(row)

        logger.dump_tabular()

        report.save()

        if outer_iter == 1 or outer_iter % 5 == 0 and v.get('scratch_dir', False):
            command = 'rsync -a {} {}'.format(os.path.join(log_dir, ''), os.path.join(v['scratch_dir'], ''))
            print("Running command:\n{}".format(command))
            subprocess.run(command.split(), check=True)

    if v.get('scratch_dir', False):
        command = 'rsync -a {} {}'.format(os.path.join(log_dir, ''), os.path.join(v['scratch_dir'], ''))
        print("Running command:\n{}".format(command))
        subprocess.run(command.split(), check=True)
예제 #8
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])
    sampling_res = 2 if 'sampling_res' not in v.keys() else v['sampling_res']

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report and plot_policy_reward...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=4)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    tf_session = tf.Session()

    inner_env = normalize(PointMazeEnv(maze_id=v['maze_id']))

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    uniform_start_generator = UniformStateGenerator(state_size=v['start_size'],
                                                    bounds=v['start_range'],
                                                    center=v['start_center'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=uniform_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[:v['goal_size']],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        only_feasible=v['only_feasible'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    # initialize all logging arrays on itr0
    outer_iter = 0

    logger.log('Generating the Initial Heatmap...')
    plot_policy_means(policy,
                      env,
                      sampling_res=2,
                      report=report,
                      limit=v['start_range'],
                      center=v['start_center'])
    # test_and_plot_policy(policy, env, as_goals=False, max_reward=v['max_reward'], sampling_res=sampling_res, n_traj=v['n_traj'],
    #                      itr=outer_iter, report=report, limit=v['goal_range'], center=v['goal_center'])

    # GAN
    logger.log("Instantiating the GAN...")
    gan_configs = {key[4:]: value for key, value in v.items() if 'GAN_' in key}
    for key, value in gan_configs.items():
        if value is tf.train.AdamOptimizer:
            gan_configs[key] = tf.train.AdamOptimizer(gan_configs[key +
                                                                  '_stepSize'])
        if value is tflearn.initializations.truncated_normal:
            gan_configs[key] = tflearn.initializations.truncated_normal(
                stddev=gan_configs[key + '_stddev'])

    gan = StateGAN(
        state_size=v['start_size'],
        evaluater_size=v['num_labels'],
        state_range=v['start_range'],
        state_center=v['start_center'],
        state_noise_level=v['start_noise_level'],
        generator_layers=v['gan_generator_layers'],
        discriminator_layers=v['gan_discriminator_layers'],
        noise_size=v['gan_noise_size'],
        tf_session=tf_session,
        configs=gan_configs,
    )
    logger.log("pretraining the GAN...")
    if v['smart_init']:
        feasible_starts = generate_starts(
            env, starts=[v['ultimate_goal']],
            horizon=50)  # without giving the policy it does brownian mo.
        labels = np.ones((feasible_starts.shape[0],
                          2)).astype(np.float32)  # make them all good goals
        plot_labeled_states(feasible_starts,
                            labels,
                            report=report,
                            itr=outer_iter,
                            limit=v['goal_range'],
                            center=v['goal_center'],
                            maze_id=v['maze_id'])

        dis_loss, gen_loss = gan.pretrain(states=feasible_starts,
                                          outer_iters=v['gan_outer_iters'])
        print("Loss of Gen and Dis: ", gen_loss, dis_loss)
    else:
        gan.pretrain_uniform(outer_iters=500,
                             report=report)  # v['gan_outer_iters'])

    # log first samples form the GAN
    initial_starts, _ = gan.sample_states_with_noise(v['num_new_starts'])

    logger.log("Labeling the starts")
    labels = label_states(initial_starts,
                          env,
                          policy,
                          v['horizon'],
                          as_goals=False,
                          n_traj=v['n_traj'],
                          key='goal_reached')

    plot_labeled_states(initial_starts,
                        labels,
                        report=report,
                        itr=outer_iter,
                        limit=v['goal_range'],
                        center=v['goal_center'],
                        maze_id=v['maze_id'])
    report.new_row()

    all_starts = StateCollection(distance_threshold=v['coll_eps'])

    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        # Sample GAN
        logger.log("Sampling starts from the GAN")
        raw_starts, _ = gan.sample_states_with_noise(v['num_new_starts'])

        if v['replay_buffer'] and outer_iter > 0 and all_starts.size > 0:
            old_starts = all_starts.sample(v['num_old_starts'])
            starts = np.vstack([raw_starts, old_starts])
        else:
            starts = raw_starts

        with ExperimentLogger(log_dir,
                              'last',
                              snapshot_mode='last',
                              hold_outter_log=True):
            logger.log("Updating the environment start generator")
            env.update_start_generator(
                UniformListStateGenerator(
                    starts.tolist(),
                    persistence=v['persistence'],
                    with_replacement=v['with_replacement'],
                ))

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                discount=v['discount'],
                plot=False,
            )

            trpo_paths = algo.train()

        if v['use_trpo_paths']:
            logger.log("labeling starts with trpo rollouts")
            [starts, labels] = label_states_from_paths(
                trpo_paths,
                n_traj=2,
                key='goal_reached',  # using the min n_traj
                as_goal=False,
                env=env)
            paths = [path for paths in trpo_paths for path in paths]
        else:
            logger.log("labeling starts manually")
            labels, paths = label_states(starts,
                                         env,
                                         policy,
                                         v['horizon'],
                                         as_goals=False,
                                         n_traj=v['n_traj'],
                                         key='goal_reached',
                                         full_path=True)

        with logger.tabular_prefix("OnStarts_"):
            env.log_diagnostics(paths)
        plot_labeled_states(starts,
                            labels,
                            report=report,
                            itr=outer_iter,
                            limit=v['goal_range'],
                            center=v['goal_center'],
                            maze_id=v['maze_id'])

        logger.log('Generating the Heatmap...')
        plot_policy_means(policy,
                          env,
                          sampling_res=2,
                          report=report,
                          limit=v['start_range'],
                          center=v['start_center'])
        test_and_plot_policy(policy,
                             env,
                             as_goals=False,
                             max_reward=v['max_reward'],
                             sampling_res=sampling_res,
                             n_traj=v['n_traj'],
                             itr=outer_iter,
                             report=report,
                             limit=v['goal_range'],
                             center=v['goal_center'])

        # ###### extra for deterministic:
        # logger.log("Labeling the goals deterministic")
        # with policy.set_std_to_0():
        #     labels_det = label_states(goals, env, policy, v['horizon'], n_traj=v['n_traj'], n_processes=1)
        # plot_labeled_states(goals, labels_det, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'])

        labels = np.logical_and(labels[:, 0],
                                labels[:, 1]).astype(int).reshape((-1, 1))

        logger.log("Training the GAN")
        if np.any(labels):
            gan.train(
                starts,
                labels,
                v['gan_outer_iters'],
            )

        logger.dump_tabular(with_prefix=False)
        report.new_row()

        # append new goals to list of all goals (replay buffer): Not the low reward ones!!
        filtered_raw_start = [
            start for start, label in zip(starts, labels) if label[0] == 1
        ]
        all_starts.append(filtered_raw_start)