예제 #1
0
class blr_model:
    def __init__(self, x_dim, y_dim, state_dim, action_dim,
                 observation_space_low, observation_space_high,
                 action_bound_low, action_bound_high, unroll_steps, no_samples,
                 no_basis, discount_factor, train_policy_batch_size,
                 train_policy_iterations, hyperparameters, debugging_plot):

        assert x_dim == state_dim + action_dim
        assert len(hyperparameters) == y_dim
        self.x_dim = x_dim
        self.y_dim = y_dim
        self.state_dim = state_dim
        self.action_dim = action_dim
        self.observation_space_low = observation_space_low
        self.observation_space_high = observation_space_high
        self.action_bound_low = action_bound_low
        self.action_bound_high = action_bound_high

        self.unroll_steps = unroll_steps
        self.no_samples = no_samples
        self.no_basis = no_basis
        self.discount_factor = discount_factor

        self.train_policy_batch_size = train_policy_batch_size
        self.train_policy_iterations = train_policy_iterations

        self.hyperparameters = hyperparameters
        self.debugging_plot = debugging_plot

        self.policy_scope = 'policy_scope'
        self.policy_reuse_vars = None

        self.models = [
            bayesian_model(self.x_dim, self.observation_space_low,
                           self.observation_space_high, self.action_bound_low,
                           self.action_bound_high, self.no_basis,
                           *self.hyperparameters[i]) for i in range(self.y_dim)
        ]

        self.states = tf.placeholder(shape=[None, self.state_dim],
                                     dtype=tf.float64)
        self.batch_size = tf.shape(self.states)[0]
        #self.batch_size = 3
        self.actions = self.build_policy(self.states)

        self.cum_xx = [
            tf.tile(tf.expand_dims(model.cum_xx_pl, axis=0),
                    [self.batch_size * self.no_samples, 1, 1])
            for model in self.models
        ]
        self.cum_xy = [
            tf.tile(tf.expand_dims(model.cum_xy_pl, axis=0),
                    [self.batch_size * self.no_samples, 1, 1])
            for model in self.models
        ]
        self.unroll(self.states)
        #self.unroll2(self.states)

    #TODO: for debugging purposes
    def unroll2(self, seed_states):
        assert seed_states.shape.as_list() == [None, self.state_dim]
        no_samples = self.no_samples
        unroll_steps = self.unroll_steps
        #self.reward_model = real_env_pendulum_reward()#Use true model.
        self.reward_model = ANN(self.state_dim + self.action_dim, 1)
        self.placeholders_reward = [
            tf.placeholder(shape=v.shape, dtype=tf.float64)
            for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                       self.reward_model.scope)
        ]
        self.assign_ops = [
            v.assign(pl) for v, pl in zip(
                tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                  self.reward_model.scope),
                self.placeholders_reward)
        ]

        states = tf.expand_dims(seed_states, axis=1)
        states = tf.tile(states, [1, no_samples, 1])
        states = tf.reshape(states, shape=[-1, self.state_dim])

        costs = []
        self.next_states = []
        for unroll_step in range(unroll_steps):
            actions = self.build_policy(states)

            rewards = (self.discount_factor**
                       unroll_step) * self.reward_model.build(states, actions)
            rewards = tf.reshape(tf.squeeze(rewards, axis=-1),
                                 shape=[-1, no_samples])
            costs.append(-rewards)

            states_actions = tf.concat([states, actions], axis=-1)

            next_states = self.get_next_states2(states_actions)
            self.next_states.append(next_states)
            states = next_states

        costs = tf.stack(costs, axis=-1)
        self.loss = tf.reduce_mean(
            tf.reduce_sum(tf.reduce_mean(costs, axis=1), axis=-1))
        self.opt = tf.train.AdamOptimizer().minimize(
            self.loss,
            var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                       'policy_scope'))

    #TODO: for debugging purposes
    def get_next_states(self, states_actions):
        self.string = 'unroll2_gns'
        mu, sigma = [
            tf.concat(e, axis=-1) for e in zip(*[
                model.posterior_predictive_distribution(states_actions, None)
                for model in self.models
            ])
        ]
        self.mus1.append(mu)
        self.sigmas1.append(sigma)
        #print mu.shape
        #print sigma.shape
        next_state = tfd.MultivariateNormalDiag(
            loc=mu, scale_diag=tf.sqrt(sigma)).sample()
        return next_state

    #TODO: for debugging purposes
    def get_next_states2(self, states_actions):
        self.string = 'unroll2_gns2'
        mus = []
        sigmas = []
        for model in self.models:
            mu, sigma = model.mu_sigma(model.cum_xx_pl, model.cum_xy_pl)
            post_pred_mu, post_pred_sigma = model.post_pred2(
                states_actions, mu, sigma)

            mus.append(post_pred_mu)
            sigmas.append(post_pred_sigma)
        mus = tf.concat(mus, axis=-1)
        sigmas = tf.concat(sigmas, axis=-1)
        self.mus2.append(mus)
        self.sigmas2.append(sigmas)
        #print mus.shape
        #print sigmas.shape
        next_state = tfd.MultivariateNormalDiag(
            loc=mus, scale_diag=tf.sqrt(sigmas)).sample()
        return next_state

    def unroll(self, seed_states):
        assert seed_states.shape.as_list() == [None, self.state_dim]
        no_samples = self.no_samples
        unroll_steps = self.unroll_steps
        #self.reward_model = real_env_pendulum_reward()#Use true model.
        self.reward_model = ANN(self.state_dim + self.action_dim, 1)
        self.placeholders_reward = [
            tf.placeholder(shape=v.shape, dtype=tf.float64)
            for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                       self.reward_model.scope)
        ]
        self.assign_ops = [
            v.assign(pl) for v, pl in zip(
                tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                  self.reward_model.scope),
                self.placeholders_reward)
        ]

        states = tf.expand_dims(seed_states, axis=1)
        states = tf.tile(states, [1, no_samples, 1])
        states = tf.reshape(states, shape=[-1, self.state_dim])

        self.mus0 = []
        self.sigmas0 = []
        self.mus1 = []
        self.sigmas1 = []
        self.mus2 = []
        self.sigmas2 = []

        costs = []
        self.next_states = []
        #ns = []
        #bs = []
        for unroll_step in range(unroll_steps):
            print 'unrolling:', unroll_step
            if self.debugging_plot == True:
                actions = self.build_policy2(states)
            else:
                actions = self.build_policy(states)

            # Reward
            rewards = (self.discount_factor**
                       unroll_step) * self.reward_model.build(states, actions)
            rewards = tf.reshape(tf.squeeze(rewards, axis=-1),
                                 shape=[-1, no_samples])
            costs.append(-rewards)

            states_actions = tf.concat([states, actions], axis=-1)
            mus, sigmas = zip(*[
                self.mu_sigma(self.cum_xx[y], self.cum_xy[y], self.models[y].s,
                              self.models[y].noise_sd)
                for y in range(self.y_dim)
            ])

            bases = [
                model.approx_rbf_kern_basis(states_actions)
                for model in self.models
            ]
            #bs.append(bases)
            mu_pred, sigma_pred = [
                tf.concat(e, axis=-1) for e in zip(*[
                    self.prediction(mu, sigma, basis, model.noise_sd) for mu,
                    sigma, basis, model in zip(mus, sigmas, bases, self.models)
                ])
            ]

            self.mus0.append(mu_pred)
            self.sigmas0.append(sigma_pred)
            self.get_next_states(states_actions)
            self.get_next_states2(states_actions)

            next_states = tfd.MultivariateNormalDiag(
                loc=mu_pred, scale_diag=tf.sqrt(sigma_pred)).sample()
            #ns.append(tf.split(next_states, self.y_dim, axis=-1))

            self.next_states.append(
                tf.reshape(next_states, shape=[-1, no_samples,
                                               self.state_dim]))

            for y in range(self.y_dim):
                self.update_posterior(bases[y], next_states[..., y:y + 1], y)

            states = next_states

        if self.debugging_plot == False:
            print 'here1'
            costs = tf.stack(costs, axis=-1)
            print 'here2'
            self.loss = tf.reduce_mean(
                tf.reduce_sum(tf.reduce_mean(costs, axis=1), axis=-1))
            print 'here3'
            self.opt = tf.train.AdamOptimizer().minimize(
                self.loss,
                var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                           'policy_scope'))
            print 'here4'
        self.string = 'unroll'

    def update_posterior(self, X, y, i):
        X_expanded_dims = tf.expand_dims(X, axis=-1)
        y_expanded_dims = tf.expand_dims(y, axis=-1)
        self.cum_xx[i] += tf.matmul(
            X_expanded_dims, tf.transpose(X_expanded_dims, perm=[0, 2, 1]))
        self.cum_xy[i] += tf.matmul(X_expanded_dims, y_expanded_dims)

    def prediction(self, mu, sigma, basis, noise_sd):
        basis_expanded_dims = tf.expand_dims(basis, axis=-1)
        mu_pred = tf.matmul(tf.transpose(mu, perm=[0, 2, 1]),
                            basis_expanded_dims)
        sigma_pred = tf.square(noise_sd) + tf.matmul(
            tf.matmul(tf.transpose(basis_expanded_dims, perm=[0, 2, 1]),
                      sigma), basis_expanded_dims)

        return tf.squeeze(mu_pred, axis=-1), tf.squeeze(sigma_pred, axis=-1)

    def mu_sigma(self, xx, xy, s, noise_sd):
        noise_sd_sq = tf.square(noise_sd)
        prior_sigma_inv = tf.matrix_inverse(
            tf.tile(
                tf.expand_dims(s * tf.eye(self.no_basis, dtype=tf.float64),
                               axis=0),
                [self.batch_size * self.no_samples, 1, 1]))
        A = tf.matrix_inverse(tf.multiply(noise_sd_sq, prior_sigma_inv) + xx)
        sigma = tf.multiply(noise_sd_sq, A)
        # Assuming that prior mean is zero vector
        mu = tf.matmul(A, xy)
        return mu, sigma

    def mu_sigma2(self, xx, xy, s, noise_sd, bs, ns, idx):
        if bs and ns:
            assert len(zip(*bs)) == self.y_dim
            assert len(zip(*ns)) == self.y_dim
            X = zip(*bs)[idx]
            y = zip(*ns)[idx]

            X = tf.expand_dims(tf.stack(X, axis=0), axis=-1)
            XX = tf.matmul(X, tf.transpose(X, perm=[0, 1, 3, 2]))

            y = tf.expand_dims(tf.stack(y, axis=0), axis=-1)
            Xy = tf.matmul(X, y)

            XX_ = tf.reduce_sum(XX, axis=0)
            Xy_ = tf.reduce_sum(Xy, axis=0)

        else:
            XX_ = 0.
            Xy_ = 0.

        noise_sd_sq = tf.square(noise_sd)
        prior_sigma_inv = tf.matrix_inverse(
            tf.tile(
                tf.expand_dims(s * tf.eye(self.no_basis, dtype=tf.float64),
                               axis=0),
                [self.batch_size * self.no_samples, 1, 1]))
        A = tf.matrix_inverse(
            tf.multiply(noise_sd_sq, prior_sigma_inv) + xx + XX_)
        sigma = tf.multiply(noise_sd_sq, A)
        # Assuming that prior mean is zero vector
        mu = tf.matmul(A, xy + Xy_)
        return mu, sigma

    def update(self, sess, X=None, y=None, memory=None):
        if memory is not None:
            states = np.stack([e[0] for e in memory], axis=0)
            actions = np.stack([e[1] for e in memory], axis=0)
            y = np.stack([e[3] for e in memory], axis=0)
            X = np.concatenate([states, actions], axis=-1)

        for i in range(self.y_dim):
            self.models[i].update(sess, X, y[..., i])

    def act(self, sess, state):
        state = np.atleast_2d(state)
        action = sess.run(self.actions, feed_dict={self.states: state})
        return action[0]

    def train(self, sess, memory):
        feed_dict = {}
        #TODO: for debugging purposes
        if self.string == 'unroll':
            for model in self.models:
                feed_dict[model.cum_xx_pl] = model.cum_xx
                feed_dict[model.cum_xy_pl] = model.cum_xy
                feed_dict[model.mu_placeholder] = model.mu  #for testing
                feed_dict[model.sigma_placeholder] = model.sigma  #for testing
                feed_dict[
                    model.sigma_prior_pl] = model.sigma_prior  #for testing
                feed_dict[model.mu_prior_pl] = model.mu_prior  #for testing
        elif self.string == 'unroll2_gns':
            for model in self.models:
                feed_dict[model.mu_placeholder] = model.mu
                feed_dict[model.sigma_placeholder] = model.sigma
        elif self.string == 'unroll2_gns2':
            for model in self.models:
                feed_dict[model.cum_xx_pl] = model.cum_xx
                feed_dict[model.cum_xy_pl] = model.cum_xy
                feed_dict[model.sigma_prior_pl] = model.sigma_prior
                feed_dict[model.mu_prior_pl] = model.mu_prior

        for it in range(self.train_policy_iterations):
            batch = memory.sample(self.train_policy_batch_size)
            states = np.stack([b[0] for b in batch], axis=0)
            feed_dict[self.states] = states

            mus0, sigmas0, mus1, sigmas1, mus2, sigmas2, next_states, loss, _ = sess.run(
                [
                    self.mus0, self.sigmas0, self.mus1, self.sigmas1,
                    self.mus2, self.sigmas2, self.next_states, self.loss,
                    self.opt
                ],
                feed_dict=feed_dict)
            if loss > 1000.:
                print next_states
            '''
            assert len(mus0) == len(sigmas0)
            assert len(mus0) == len(mus1)
            assert len(mus0) == len(sigmas1)
            assert len(mus0) == len(mus2)
            assert len(mus0) == len(sigmas2)
            '''
            '''
            for mu0, sigma0, mu1, sigma1, mu2, sigma2, ii in zip(mus0, sigmas0, mus1, sigmas1, mus2, sigmas2, range(len(mus0))):
                try:
                    np.testing.assert_almost_equal(sigma1, sigma2, decimal=4)
                except:
                    print ii, 'here0'
                    for i in range(len(sigma1)):
                        for j in range(len(sigma1[i])):
                            print sigma1[i, j], sigma2[i, j]
                    exit()
                try:
                    np.testing.assert_almost_equal(mu1, mu2, decimal=4)
                except:
                    print ii, 'here3',
                    for i in range(len(mu1)):
                        print mu1[i], mu2[i]
                    exit()
                try:
                    np.testing.assert_almost_equal(mu0, mu1, decimal=4)
                except:
                    print ii, 'here1',
                    for i in range(len(mu0)):
                        print mu0[i], mu1[i]
                    exit()
                try:
                    np.testing.assert_almost_equal(mu0, mu2, decimal=4)
                except:
                    print ii, 'here2',
                    for i in range(len(m0)):
                        print m0[i], m2[i]
                    exit()
                try:
                    np.testing.assert_almost_equal(sigma0, sigma1, decimal=4)
                except:
                    print ii, 'here4',
                    for i in range(len(sigma0)):
                        for j in range(len(sigma0[i])):
                            print sigma0[i, j], sigma1[i, j]
                    exit()
                try:
                    np.testing.assert_almost_equal(sigma0, sigma2, decimal=4)
                except:
                    print ii, 'here5',
                    for i in range(len(sigma0)):
                        for j in range(len(sigma0[i])):
                            print sigma0[i, j], sigma2[i, j]
                    exit()
            '''
            print 'iteration:', it, 'loss:', loss, self.string, len(mus0)
            '''
            try:
                mus0, sigmas0, mus1, sigmas1, mus2, sigmas2, next_states, loss, _ = sess.run([self.mus0, self.sigmas0, self.mus1, self.sigmas1, self.mus2, self.sigmas2, self.next_states, self.loss, self.opt], feed_dict=feed_dict)
                assert len(mus0) == len(sigmas0)
                assert len(mus0) == len(mus1)
                assert len(mus0) == len(sigmas1)
                assert len(mus0) == len(mus2)
                assert len(mus0) == len(sigmas2)
                for mu0, sigma0, mu1, sigma1, mu2, sigma2 in zip(mus0, sigmas0, mus1, sigmas1, mus2, sigmas2):
                    np.testing.assert_almost_equal(mu0, mu1)
                    np.testing.assert_almost_equal(mu0, mu2)
                    np.testing.assert_almost_equal(mu1, mu2)
                    np.testing.assert_almost_equal(sigma0, sigma1)
                    np.testing.assert_almost_equal(sigma0, sigma2)
                    np.testing.assert_almost_equal(sigma1, sigma2)
                if loss > 1000.:
                    print next_states
                print 'iteration:', it, 'loss:', loss, self.string
            except:
                print 'training step failed.'
            '''

    def build_policy(self, states):
        assert states.shape.as_list() == [None, self.state_dim]

        #Fully connected layer 1
        fc1 = slim.fully_connected(states,
                                   256,
                                   activation_fn=tf.nn.relu,
                                   scope=self.policy_scope + '/fc1',
                                   reuse=self.policy_reuse_vars)

        #Fully connected layer 2
        fc2 = slim.fully_connected(fc1,
                                   256,
                                   activation_fn=tf.nn.relu,
                                   scope=self.policy_scope + '/fc2',
                                   reuse=self.policy_reuse_vars)

        #Output layer
        output = slim.fully_connected(fc2,
                                      self.action_dim,
                                      activation_fn=tf.nn.tanh,
                                      scope=self.policy_scope + '/output',
                                      reuse=self.policy_reuse_vars)

        #Apply action bounds
        np.testing.assert_array_equal(-self.action_bound_low,
                                      self.action_bound_high)
        action_bound = tf.constant(self.action_bound_high, dtype=tf.float64)
        policy = tf.multiply(output, action_bound)

        #Change flag
        self.policy_reuse_vars = True

        return policy

    def build_policy2(self, states):
        try:
            self.policy
        except:
            self.idx = 0
            self.policy = tf.placeholder(shape=[self.unroll_steps, 1],
                                         dtype=tf.float64)

        action = self.policy[self.idx:self.idx + 1, ...]
        tile_size = tf.shape(states)[0]

        action_tiled = tf.tile(action, [tile_size, 1])
        self.idx += 1

        return action_tiled
예제 #2
0
class direct_policy_search:
    def __init__(self, state_dim, action_dim, action_bound_high, \
                 action_bound_low, unroll_length, discount_factor, \
                 gradient_descent_steps, scope):
        self.state_dim = state_dim
        self.action_dim = action_dim
        self.action_bound_high = action_bound_high
        self.action_bound_low = action_bound_low
        self.unroll_length = unroll_length
        self.discount_factor = discount_factor
        self.gradient_descent_steps = gradient_descent_steps
        self.scope = scope

        #Make sure bounds are same (assumption can be relaxed later)
        np.testing.assert_array_equal(-self.action_bound_low,
                                      self.action_bound_high)

        #Flags
        self.policy_reuse_vars = None
        '''
        self.reward_model = ANN(self.state_dim+self.action_dim, 1)
        self.placeholders_reward = [tf.placeholder(shape=v.shape, dtype=tf.float64)
                                    for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.reward_model.scope)]
        self.assign_ops0 = [v.assign(pl) for v, pl in zip(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.reward_model.scope),
                            self.placeholders_reward)]
        '''
        #self.reward_model = real_env_pendulum_reward()
        self.reward_model = mountain_car_continuous_reward_function()

        #self.state_model = real_env_pendulum_state()
        #self.state_model = mountain_car_continuous_state_function()
        self.state_model = ANN(self.state_dim + self.action_dim,
                               self.state_dim)
        self.placeholders_state = [
            tf.placeholder(shape=v.shape, dtype=tf.float64)
            for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                       self.state_model.scope)
        ]
        self.assign_ops1 = [
            v.assign(pl) for v, pl in zip(
                tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.
                                  state_model.scope), self.placeholders_state)
        ]

        #Build computational graph (i.e., unroll policy)
        #self.states = tf.placeholder(shape=[None, self.state_dim], dtype=tf.float32)
        self.states = tf.placeholder(shape=[None, self.state_dim],
                                     dtype=tf.float64)

        self.action = self.build_policy(self.states)
        state = self.states
        action = self.build_policy(state)
        rewards = []
        for i in range(self.unroll_length):
            print i
            #reward = pow(self.discount_factor, i) * self.reward_model.build(state, action)
            #reward = pow(self.discount_factor, i) * self.reward_model.step_tf(state, action)
            reward = pow(self.discount_factor,
                         i) * self.reward_model.sigmoid_approx(state, action)
            rewards.append(reward)
            state = self.state_model.build(state, action)
            #state = self.state_model.step_tf(state, action)
            action = self.build_policy(state)

        rewards = tf.reduce_sum(tf.stack(rewards, axis=-1), axis=-1)
        print 'here0'
        self.loss = -tf.reduce_mean(tf.reduce_sum(rewards, axis=-1))
        print 'here1'
        self.opt = tf.train.AdamOptimizer().minimize(
            self.loss,
            var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                       self.scope))
        print 'here2'

    def act(self, sess, states):
        states = np.atleast_2d(states)
        #print sess.run(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
        action = sess.run(self.action, feed_dict={self.states: states})
        return action[0]

    def train(self, sess, states):
        for _ in range(self.gradient_descent_steps):
            loss, _ = sess.run([self.loss, self.opt],
                               feed_dict={self.states: states})
            #asin1, asin2, loss, _ = sess.run([self.asin1, self.asin2, self.loss, self.opt], feed_dict={self.states:states})

    def build_policy(self, states):
        assert states.shape.as_list() == [None, self.state_dim]

        #Fully connected layer 1
        fc1 = slim.fully_connected(states,
                                   256,
                                   activation_fn=tf.nn.relu,
                                   scope=self.scope + '/fc1',
                                   reuse=self.policy_reuse_vars)

        fc2 = slim.fully_connected(fc1,
                                   256,
                                   activation_fn=tf.nn.relu,
                                   scope=self.scope + '/fc2',
                                   reuse=self.policy_reuse_vars)

        #Output layer
        output = slim.fully_connected(fc2,
                                      self.action_dim,
                                      activation_fn=tf.nn.tanh,
                                      scope=self.scope + '/output',
                                      reuse=self.policy_reuse_vars)

        #Apply action bounds
        #action_bound = tf.constant(self.action_bound_high, dtype=tf.float32)
        action_bound = tf.constant(self.action_bound_high, dtype=tf.float64)
        policy = tf.multiply(output, action_bound)

        #Change flag
        self.policy_reuse_vars = True

        return policy