def do_stuff(): image = get_image() dft = cv2.dft(np.float32(image), flags=cv2.DFT_COMPLEX_OUTPUT) # shift the zero-frequncy component to the center of the spectrum dft_shift = np.fft.fftshift(dft) # save image of the image in the fourier domain. magnitude_spectrum = 20 * np.log( cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1])) # magnitude_spectrum = 20 * np.log(np.sqrt(dft_shift[:, :, 0] + dft_shift[:, :, 1])) cv2.imwrite("magnitude_spectrum.png", magnitude_spectrum) rows, cols = image.shape crow, ccol = rows // 2, cols // 2 # create a mask first, center square is 1, remaining all zeros mask = np.zeros((rows, cols, 2), np.uint8) mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1 # mask -= 1 # mask = np.abs(mask) # apply mask and inverse DFT fshift = dft_shift * mask f_ishift = np.fft.ifftshift(fshift) img_back = cv2.idft(f_ishift) img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) img_back = img_back / img_back.max() * 255 cv2.imwrite("filtered_image_low.png", img_back)
def hpf(img): gray = BGR_to_GRAY(img) dft = cv2.dft(np.float32(gray), flags=cv2.DFT_COMPLEX_OUTPUT) dftShift = np.fft.fftshift(dft) R, C = gray.shape r, c = int(R / 2), int(C / 2) out = hpk(r, c, 8, dftShift) out = (out / out.max() * 255).astype(np.uint8) return out
def HPF_OpenCv(image): dft = cv2.dft(np.float32(image), flags=cv2.DFT_COMPLEX_OUTPUT) dftShift = np.fft.fftshift(dft) R, C = image.shape r, c = int(R / 2), int(C / 2) Plt_Contrast(image, HPK_OpenCv(r, c, 1, dftShift), HPK_OpenCv(r, c, 2, dftShift), HPK_OpenCv(r, c, 4, dftShift), HPK_OpenCv(r, c, 6, dftShift), HPK_OpenCv(r, c, 8, dftShift))
def DFT_IDFT_OpenCv(image): dft = cv2.dft(np.float32(image), flags=cv2.DFT_COMPLEX_OUTPUT) dftShift = np.fft.fftshift(dft) fourier = 20 * np.log(cv2.magnitude(dftShift[:, :, 0], dftShift[:, :, 1])) ishift = np.fft.ifftshift(dftShift) iimage = cv2.idft(ishift) iimage = cv2.magnitude(iimage[:, :, 0], iimage[:, :, 1]) Plt_Contrast(image, fourier, iimage)
def LPF_OpenCv(image): dft = cv2.dft(np.float32(image), flags=cv2.DFT_COMPLEX_OUTPUT) dftShift = np.fft.fftshift(dft) R, C = image.shape mask = np.zeros((R, C, 2), np.uint8) r, c = int(R / 2), int(C / 2) Plt_Contrast(image, LPK_OpenCv(mask, r, c, 5, dftShift), LPK_OpenCv(mask, r, c, 10, dftShift), LPK_OpenCv(mask, r, c, 15, dftShift), LPK_OpenCv(mask, r, c, 25, dftShift), LPK_OpenCv(mask, r, c, 50, dftShift))
def PQFT(prev_img, next_img, map_size = 64): """ Computing saliency using phase spectrum of quaternion fourier transform. Images are 3 channel. """ new_shape = (int(next_img.shape[1]/(next_img.shape[0]/map_size)), map_size) next_img = cv2.resize(next_img, new_shape, cv2.INTER_LINEAR) (b, g, r) = cv2.split(next_img) # color channels R = r-(g+b)/2 G = g-(r+b)/2 B = b-(r+g)/2 Y = (r+g)/2-abs(r-g)/2-b red_green = R-G blue_yellow = B-Y # intensity intensity = np.sum(next_img, axis=-1) # motion prev_img = cv2.resize(prev_img, new_shape, cv2.INTER_LINEAR) prev_intensity = np.sum(prev_img, axis=-1) movement = abs(intensity-prev_intensity) planes = [ movement.astype(np.float64), red_green.astype(np.float64), ] f1 = cv2.merge(planes) f1 = cv2.dft(f1) planes = cv2.split(f1) magnitude1 = cv2.magnitude(planes[0], planes[1]) magnitude1 = cv2.multiply(magnitude1, magnitude1) planes = [ blue_yellow.astype(np.float64), intensity.astype(np.float64), ] f2 = cv2.merge(planes) f2 = cv2.dft(f2) planes = cv2.split(f2) magnitude2 = cv2.magnitude(planes[0], planes[1]) magnitude2 = cv2.multiply(magnitude2, magnitude2) magnitude = magnitude1+magnitude2 magnitude = cv2.sqrt(magnitude) planes[0] = planes[0]/magnitude planes[1] = planes[1]/magnitude f2 = cv2.merge(planes) planes = cv2.split(f1) planes[0] = planes[0]/magnitude planes[1] = planes[1]/magnitude f1 = cv2.merge(planes) cv2.dft(f1, f1, cv2.DFT_INVERSE) cv2.dft(f2, f2, cv2.DFT_INVERSE) planes = cv2.split(f1) magnitude1 = cv2.magnitude(planes[0], planes[1]) magnitude1 = cv2.multiply(magnitude1, magnitude1) planes = cv2.split(f2) magnitude2 = cv2.magnitude(planes[0], planes[1]) magnitude2 = cv2.multiply(magnitude2, magnitude2) magnitude = magnitude1 + magnitude2 magnitude = cv2.GaussianBlur(magnitude, (5, 5), 8, None, 8) saliency = np.zeros((new_shape[0], new_shape[1], 1), np.uint8) saliency = cv2.normalize(magnitude, saliency, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U) return saliency
def apply_fourier_transform(img): dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft) return dft_shift
from cv2 import cv2 as cv from matplotlib import pyplot as plt import numpy as np img = cv.imread('tree.jpg', 0) dft = cv.dft(np.float32(img), flags=cv.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft) magnitude_spectrum = 20 * \ np.log(cv.magnitude(dft_shift[:,:, 0], dft_shift[:,:, 1])) plt.subplot(121), plt.imshow(img, cmap='gray') plt.title('Source'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray') plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([]) plt.show() rows, cols = img.shape crow, ccol = int(rows / 2), int(cols / 2) mask = np.zeros((rows, cols, 2), np.uint8) mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1 fshift = dft_shift * mask f_ishift = np.fft.ifftshift(fshift) img_back = cv.idft(f_ishift) plt.subplot(121), plt.imshow(img, cmap='gray') plt.title('Source'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(img_back, cmap='gray') plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
from cv2 import cv2 as cv import numpy as np from matplotlib import pyplot as plt img = cv.imread('blackmagician,jpg', 0) img_float32 = np.float32(img) dft = cv.dft(img_float32, flags == cv.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft) magnitude_spectrum = 20 * np.log( cv.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))