예제 #1
0
def extract_bright(grey_img, histogram=False):
    """
    Extracts brightest part of the image.
    Expected to be the LEDs (provided that there is a dark background)
    Returns a Thresholded image
    histgram defines if we use the hist calculation to find the best margin
    """
    ## Searches for image maximum (brightest pixel)
    # We expect the LEDs to be brighter than the rest of the image
    [minVal, maxVal, minLoc, maxLoc] = cv2.minMaxLoc(grey_img)
    # print "Brightest pixel val is %d" %(maxVal)
    state = ""
    if maxVal == 255:
        state = "="
    else:
        state = "."

    return state
    # We retrieve only the brightest part of the image
    # Here is use a fixed margin (80%), but you can use hist to enhance this one
    if 0:
        ## Histogram may be used to wisely define the margin
        # We expect a huge spike corresponding to the mean of the background
        # and another smaller spike of bright values (the LEDs)
        hist = grey_histogram(grey_img, nBins=64)
        [hminValue, hmaxValue, hminIdx, hmaxIdx] = cv2.getMinMaxHistValue(hist)
        margin = 0  # statistics to be calculated using hist data
    else:
        margin = 0.8

    thresh = int(maxVal * margin)  # in pix value to be extracted
    # print "Threshold is defined as %d" %(thresh)
    return thresh
예제 #2
0
    def run(self):
        hist = cv2.createHist([180], cv2.CV_HIST_ARRAY, [(0,180)], 1 )
        backproject_mode = True
        
        while True:
            frame = cv2.QueryFrame( self.capture )

            # Convert to HSV and keep the hue
            hsv = cv2.createImage(cv2.GetSize(frame), 8, 3)
            cv2.cvtColor(frame, hsv, cv2.CV_BGR2HSV)
            self.hue = cv2.createImage(cv2.GetSize(frame), 8, 1)
            cv2.split(hsv, self.hue, None, None, None)

            # Compute back projection
            backproject = cv2.createImage(cv2.GetSize(frame), 8, 1)
            cv2.calcArrBackProject( [self.hue], backproject, hist )

            # Run the cam-shift (if the a window is set and != 0)
            if self.track_window and is_rect_nonzero(self.track_window):
                crit = ( cv2.CV_TERMCRIT_EPS | cv2.CV_TERMCRIT_ITER, 10, 1)
                (iters, (area, value, rect), track_box) = cv2.camShift(backproject, self.track_window, crit) #Call the camshift !!
                self.track_window = rect #Put the current rectangle as the tracked area


            # If mouse is pressed, highlight the current selected rectangle and recompute histogram
            if self.drag_start and is_rect_nonzero(self.selection):
                sub = cv2.getSubRect(frame, self.selection) #Get specified area
                
                #Make the effect of background shadow when selecting a window
                save = cv2.cloneMat(sub)
                cv2.convertScale(frame, frame, 0.5)
                cv2.copy(save, sub)
                
                #Draw temporary rectangle
                x,y,w,h = self.selection
                cv2.rectangle(frame, (x,y), (x+w,y+h), (255,255,255))

                #Take the same area but in hue image to calculate histogram
                sel = cv2.getSubRect(self.hue, self.selection ) 
                cv2.calcArrHist( [sel], hist, 0)
                
                #Used to rescale the histogram with the max value (to draw it later on)
                (_, max_val, _, _) = cv2.getMinMaxHistValue( hist)
                if max_val != 0:
                    cv2.convertScale(hist.bins, hist.bins, 255. / max_val) 
                    
            elif self.track_window and is_rect_nonzero(self.track_window): #If window set draw an elipseBox
                cv2.ellipseBox( frame, track_box, cv2.CV_RGB(255,0,0), 3, cv2.CV_AA, 0 )


            cv2.showImage( "CamShiftDemo", frame )
            cv2.showImage( "Backprojection", backproject)
            cv2.showImage( "Histogram", self.hue_histogram_as_image(hist))

            c = cv2.waitKey(7) % 0x100
            if c == 27:
                break
예제 #3
0
    hist = 0
    maxVal = 0
    thresh = 0
    success, image = vidcap.read()
    print('Read a new frame: ', success)
    cv2.imwrite(os.path.join(Folder, "frame{:d}.jpg".format(count)),
                image)  # save frame as JPEG file
    image1 = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    cv2.imwrite(os.path.join(Folder, "frameg{:d}.jpg".format(count)), image1)
    #hist = cv2.calcHist([image1],[0],None,[255],[0,256])
    [minVal, maxVal, minLoc, maxLoc] = cv2.minMaxLoc(image1)
    print "Brightest pixel val is %d" % (maxVal)

    if 0:
        ## Histogram may be used to wisely define the margin
        # We expect a huge spike corresponding to the mean of the background
        # and another smaller spike of bright values (the LEDs)
        hist = cv2.calcHist([image1], [0], None, [64], [0, 256])
        [hminValue, hmaxValue, hminIdx, hmaxIdx] = cv2.getMinMaxHistValue(hist)
        margin = 0  # statistics to be calculated using hist data
    else:
        margin = 0.71
    thresh = int(maxVal * margin)
    print "Threshold is defined as %d" % (thresh)
    _, thresh1 = cv2.threshold(image1, thresh, 255, cv2.THRESH_BINARY)
    cv2.imwrite(os.path.join(Folder, "framet{:d}.jpg".format(count)), thresh1)
    count += 1
time_end = time.time()
print time_end - time_start
print fps