def main(): parser = argparse.ArgumentParser( description='Train MVAE with VCC2018 dataset', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--train-dataset', help='Path of training dataset.', type=str, required=True) parser.add_argument('--val-dataset', help='Path of validation dataset.', type=str, required=True) parser.add_argument('--batch-size', '-b', help='Batch size.', type=int, default=32) parser.add_argument('--epochs', '-e', help='Number of epochs.', type=int, default=800) parser.add_argument('--eval-interval', help='Evaluate every N epochs.', type=int, default=200, metavar='N') parser.add_argument('--gpu', '-g', help='GPU id. (Negative number indicates CPU)', type=int, default=-1) parser.add_argument('--learning-rate', '-l', help='Learning Rate.', type=float, default=1e-3) args = parser.parse_args() if_use_cuda = torch.cuda.is_available() and args.gpu >= 0 device = torch.device('cuda:{}'.format(args.gpu) if if_use_cuda else 'cpu') with open(args.train_dataset, 'rb') as f: train_dataset = pickle.load(f) train_dataloader = torch.utils.data.DataLoader( train_dataset, args.batch_size, shuffle=True) val_dataset = make_eval_set(args.val_dataset) baseline = baseline_ilrma(val_dataset) model = CVAE(n_speakers=train_dataset[0][1].size(0)).to(device) optimizer = torch.optim.Adam(model.parameters(), args.learning_rate) # TensorBoard writer = SummaryWriter() for epoch in range(1, args.epochs + 1): train(model, train_dataloader, optimizer, device, epoch, writer) if epoch % args.eval_interval == 0: validate(model, val_dataset, baseline, device, epoch, writer) writer.close()
if __name__ == '__main__': train_dataset = WordDataset('train') test_dataset = WordDataset('test') max_length = train_dataset.max_length train_dataloader = DataLoader(train_dataset, batch_size=1, shuffle=True) test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False) tense_list = test_dataloader.dataset.tense2idx.values() model = CVAE(max_length) model = model.to(device) if args.load_model != None: state_dict = torch.load(args.loadmodel) model.load_state_dict(state_dict) optimizer = optim.SGD(model.parameters(), lr=lr) transformer = WordTransoformer() trainset_size = len(train_dataloader.dataset) testset_size = len(test_dataloader.dataset) writer = SummaryWriter('logs/' + args.exp_name) start = time.time() best_bleu_score = 0 annealing_rate = 0.01 cycle = 15 # annealing_rate = 1./(args.warmup * len(train_dataloader.dataset)) print('Annealing: ', args.annealing) for epoch in range(epochs): # if args.annealing == 'cyclical' and epoch % cycle == 0: # kl_weight = args.kl_start kl_weight = get_kl_weight(epoch + 1, epochs, 'cycle', 2)
def main(): parser = argparse.ArgumentParser( description='Train MVAE with VCC2018 dataset', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--train-dataset', help='Path of training dataset.', type=str, required=True) parser.add_argument('--val-dataset', help='Path of validation dataset.', type=str, required=True) parser.add_argument('--batch-size', '-b', help='Batch size.', type=int, default=32) parser.add_argument('--epochs', '-e', help='Number of epochs.', type=int, default=800) parser.add_argument('--eval-interval', help='Evaluate and save model every N epochs.', type=int, default=200, metavar='N') parser.add_argument('--gpu', '-g', help='GPU id. (Negative number indicates CPU)', type=int, default=-1) parser.add_argument('--learning-rate', '-l', help='Learning Rate.', type=float, default=1e-3) parser.add_argument('--output', help='Save model to PATH', type=str, default='./models') args = parser.parse_args() if not os.path.isdir(args.output): os.mkdir(args.output) if_use_cuda = torch.cuda.is_available() and args.gpu >= 0 if if_use_cuda: device = torch.device(f'cuda:{args.gpu}') cp.cuda.Device(args.gpu).use() else: device = torch.device('cpu') train_dataset = torch.load(args.train_dataset) train_dataloader = torch.utils.data.DataLoader( train_dataset, args.batch_size, shuffle=True) val_dataset = make_eval_set(args.val_dataset) baseline = baseline_ilrma(val_dataset, device) model = CVAE(n_speakers=train_dataset[0][1].size(0)).to(device) optimizer = torch.optim.Adam(model.parameters(), args.learning_rate) # TensorBoard writer = SummaryWriter() for epoch in range(1, args.epochs + 1): train(model, train_dataloader, optimizer, device, epoch, writer) if epoch % args.eval_interval == 0: validate(model, val_dataset, baseline, device, epoch, writer) # Save model model.cpu() path = os.path.join(args.output, f'model-{epoch}.pth') torch.save(model.state_dict(), path) model.to(device) writer.close()